Резонатор воздушного фильтра для чего нужен – резонатор воздушного фильтра — Зачем нужен резонатор воздушного фильтра (бачок под крылом) (см. рис), без него можно ездить? — 22 ответа


Для чего нужен резонатор воздушного фильтра?

Резонатор фильтра устанавливается непосредственно перед его корпусом и является первой точкой забора воздуха. Необходимость его применения возникла из-за шума, который издает мотор во время работы. Понятное дело, что для снижения звуковых колебаний используется резонатор в выхлопной системе, однако этот шум распространяется не только туда, но и в обратную сторону – систему питания.

Кроме основной своей функции, резонатор воздушного фильтра применяется и для разделения потоков. Ведь при движении в систему питания этот поток создает сопротивление встречному воздуху, из-за чего мотор получает кислородное голодание.

Внутри резонатора находится комплекс перегородок, которые создают сопротивление выходящему звуку. В результате, при прохождении через них, сила звука уменьшается, и мотор работает намного тише.

Есть еще один отдельный вид резонаторов, который применяется для предохранения попадания влаги в мотор. Это очень актуальная проблема при преодолении водных препятствий. Внутри его корпуса устанавливается влагоотделитель, который задерживает воду и защищает двигатель от неблагоприятных воздействий.

Как часто надо заменять фильтр?

В настоящее время в системе впуска тяжелых машин устанавливают, как правило, два воздушных фильтра – основной и вторичный, который правильнее называть предохранительным. Многие ошибочно считают, что первичный фильтр с бумажным фильтрующим элементом является фильтром грубой очистки, тогда как вторичный (войлочный) – основным. На самом деле если эффективность обычного бумажного фильтра более 99,9%, то у вторичного она составляет всего 80…90%, и этот фильтр в принципе не может задержать загрязнение, пропущенное первичным. Поэтому вторичный фильтр рекомендуют менять в два раза реже, чем основной. Задача вторичного фильтра – временно задержать загрязнение, накопившееся на основном фильтрующем элементе, в случае его повреждения.

Большинство компаний делают предохранительный фильтр из бумаги. Характеристики более дешевой бумаги, используемой во вторичных фильтрах, существенно хуже, а потому их эффективность в любом случае меньше, чем основных.

Итак, определить на глаз, когда надо менять фильтр, в принципе невозможно. Для этого существуют специальные датчики, которые показывают сопротивление, создаваемое этим фильтром. Такие датчики устанавливают на выходе фильтра. Сейчас на нашем рынке представлено несколько типов механических датчиков со шкалой в миллиметрах и дюймах водного столба (сказывается американское происхождение).

Обычно считается, что воздушный фильтр следует менять, когда его сопротивление во впускном тракте достигает уровня 25 дюймов (635 мм) вод. ст. В то же время многие датчики имеют шкалу лишь до 20 дюймов. Это вызвано тем, что сопротивление создается не только на фильтре, но и по всему впускному тракту.

Существует два типа подобных датчиков – более простые механические и более дорогие электромеханические. В зависимости от подключения и от того, где будет производиться контроль за давлением, сам показывающий прибор может быть установлен как непосредственно на корпусе фильтра, так и на панели приборов или в другом удобном месте, поскольку к воздушному фильтру зачастую добраться достаточно тяжело.

Виды резонаторов

Понятное дело, что все двигатели разные, а соответственно издают совершенно разные звуковые колебания. Наравне с этим автомобильные производители изготавливают резонаторы воздушного фильтра самой различной формы. В связи с этим возникли следующие разновидности резонаторов:

  • Устройство в виде моноблока. Представляет собой одну коробку, внутри которой находится определенное число перегородок. Сам по себе он снижает звуковые колебания и, одновременно с этим, сепарирует встречные колебания воздуха, делая работу двигателя ровнее.
  • Комбинированный резонатор. Такое устройство состоит из двух близко расположенных камер. По мнению разработчиков, в одной из камер осуществляется подавление высоких, а в другой – подавление низких частот. Кроме того, использование двух камер обеспечивает хорошее выравнивание давлений.

Резонатор своими руками

Перед тем как проектировать и собирать резонатор собственной конструкции необходимо понимать одну простую вещь. Чем толще материал, из которого изготовлена выхлопная система (в том числе резонатор), тем более эффективной будет борьба с вибрациями и возникающими шумами. Именно по этой причине выпускной коллектор, который первый принимает на себя газы из ГБЦ, имеет такой внушительный вес.

Однако при выборе материала не стоит переусердствовать и выбирать слишком массивные заготовки. В противном случае масса резонатора будет значительной, а это скажется на динамических характеристиках автомобиля, и нагрузке на его ходовую часть.

Существует ряд причин, по которым автовладельцы самостоятельно изготавливают резонаторы выхлопа. Одной из них является уменьшение шума, который производит стандартный заводской глушитель. Обычно для этого в систему выхлопа газов устанавливают дополнительный резонатор. Вторая причина — изготовление и установка прямоточного резонатора автомобиля. Его особенности заключаются в следующем:

  • уменьшение потери мощности двигателя (на самом деле незначительно, составляет около 5. 10%);
  • изменение звукового фона работы двигателя и выхлопной системы (для любителей низкого звука).

Как поменять (удалить) резонатор воздушного фильтра?

Поломка такого устройства происходит очень и очень редко. Все дело в том, что оно практически не поддается механическим воздействиям, а его полость может только загрязниться пылью. В этом случае снижается пропускная способность резонатора, а значит, падает мощность и увеличивается расход топлива.

Вторая причина к замене поломка устройства в результате ДТП. Естественно, после появления трещин и т.п. использовать такой резонатор уже нельзя и его нужно срочно заменить новым, так как его свойства теряются мгновенно.

Чтобы поменять воздушный резонатор, необходимо открутить крепление патрубка и вытащить его. Затем, выкрутите два болта крепления и снимите старое устройство. Установка нового осуществляется в обратном порядке. В связи с большим многообразием форм устройства, возможно крепление резонатора в нескольких точках, а для получения доступа иногда нужно разбирать большую часть передней части автомобиля.

Вот и все, что необходимо знать о таких резонаторах.

Воздушный угольный фильтр

Угольные фильтры для очистки воздуха от запахов и вредных соединений незаменимы в быту и на мелких производствах. Принцип работы следующий: поток воздуха, нуждающийся в очистке, первоначально проходит через предфильтр, удаляющий частички пыли. Это дает возможность продлить использование угля. Далее воздушная масса проходит через цилиндры или картриджи фильтра, в которых и находится угольный слой. Выходит наружу очищенная от 99% примесей и химических соединений. Эффективность таких фильтров зависит от площади обрабатываемого помещения.

Самые популярные модели бытовых очистителей воздуха представлены компактными и угольно-кассетными фильтрами. Первые представляют собой П-образные пластмассовые рамы с угольной прослойкой внутри. Угольно-кассетный фильтр – рама из нержавеющей стали, в которую вставляется картридж с углем.

Конструктивные особенности

Указанные устройства имеют различную форму. В основном они отличаются геометрией, но возможны различия в количестве перегородок, находящихся внутри элемента. Различают основные виды резонаторов:

  1. Моноблочные. Состоят из одной емкости, имеющей определенное количество перегородок, необходимых для разделения двух встречных потоков, снижения звука.
  2. Комбинированные. Состоят из двух емкостей. Первая служит для уменьшения высоких звуковых частот, вторая — низких. Согласно распределению снижения звука происходит выравнивание пульсаций воздушных потоков.

Независимо от конструктивных особенностей резонаторов основное их назначение — обеспечение нормальной работы мотора. Поэтому при поломке устройства проведите его замену. В противном случае через несколько километров пробега вы заметите нарушения в работе движка. Замена резонатора не является сложной, ее можно осуществить самостоятельно без привлечения специалистов.

Многие автолюбители рекомендуют снять указанное устройство. По их мнению, такие действия позволят:

  1. Снизить точку забора воздуха — улучшится мощность мотора, внутрь движка будет больше поступать кислорода.
  2. Звук работающего мотора станет похож на звук мощного американского автомобиля.
  3. Возрастание динамики разгона автомобиля — уберется дополнительное сопротивление, создаваемое резонатором.

Учтите: сняв указанный элемент системы, вы можете вызвать частичное кислородное голодание двигателя — это приведет к капремонту силового агрегата, плюс спровоцируете гидроудар, если въедете в глубокую лужу, вода попадет внутрь мотора.

Фильтр воздуха – теория и практика

Эта работа была прислана на наш «бессрочный» конкурс статей. За цикл статей о фильтрации воздуха автор получил приз –

под Socket A.

Рассмотрим процессы, происходящие внутри системного блока не только с точки зрения его охлаждения, но и возможности организации фильтрации воздушного потока. Возьмём для рассмотрения условную схему хода воздуха изображённую на Рисунке 1.

Условно принимаем, что M1 – масса воздуха, поступающая через передний воздухозаборник. M2 – масса воздуха, поступающая через разного рода щели. M3 – масса нагретого воздуха, выбрасываемого из системного блока.
Согласно закону сохранения массы, масса всего входящего воздуха должна равняться массе всего выходящего воздуха системного блока. Закон можно трактовать следующим образом: Вещество не может исчезать бесследно и браться ниоткуда.

Введём для рассмотрения уравнение вида M1+ M2= M3

Почему рассматриваются массы, а не объём? Температура входящего воздуха ниже, чем выходящего, значит, он имеет большую плотность. Плотность вещества определяет его массу. Значит, масса одного и того же объёма холодного и горячего воздуха будет разной.

Что необходимо предпринять, чтобы в системном блоке не появлялась пыль? Ответ вполне очевиден: необходимо, чтобы воздух, поступающий внутрь, был чистым. Самое простое решение – это осуществлять фильтрацию входящего в системный блок воздуха. Фильтр может быть установлен как вне, так и внутри системного блока. Далее будем рассматривать вариант внутренней установки фильтра, хотя внешние реализации тоже имеют право на существование. Поставим фильтр на основной поток воздуха M1. Чтобы в корпусе не было пыли, весь воздух, входящий в корпус, должен проходить только через фильтр, а величина M2 (воздух через щели) должна быть равна нулю или быть отрицательной. Т.е. воздух должен не заходить, а выходить через щели и неплотности системного блока.

анонсы и реклама

Самая дешевая 2070, цен ниже не было

Топовая Radeon Instinct 16Gb HBM2 в продаже

Лютая мать S1200 ASUS ROG за 72 т.р.

Новый 4/8ядерный 3.6ГГц Comet Lake — 10 т.р.

6K 6016×3384 IPS

монитор в продаже, смотри цену

Новейшая LGA 1200 Asrock за 5 т.р.

Уравнение, при этом, должно трансформироваться от вида M1+(-M2)= M3 к M1= M2+ M3. Схема преобразится до вида изображённого на Рисунке 2. При выполнении условия M2 >= 0 очевидно, что в корпусе пыль накапливаться не будет, т.к. весь поступающий в корпус воздух будет проходить через фильтр.

Рассмотрим варианты организации фильтров внутри корпуса. Самый простой вариант изображён на Рисунке 3. В этом случае материал фильтра стоит после вентилятора.

Этот вариант имеет свои достоинства и недостатки:

  • + простота конструкции
  • — загрязнение вентилятора – для очистки фильтра, необходима разборка корпуса.

На Рисунке 4 изображён второй вариант, когда вентилятор стоит после фильтра. Это наиболее оптимальный вариант с точки зрения здравого смысла. Стоит отметить, что большинство бытовых пылесосов работают почти по этой же схеме, когда грязный воздух сначала проходит фильтр, чтобы не загрязнять вентилятор и его двигатель.

Достоинства и недостатки этого варианта:

  • + не загрязняется вентилятор
  • + охлаждение плат расширения направленным потоком воздуха
  • — более высокая сложность изготовления (необходим корпус для самого фильтра)
  • — меньшая площадь фильтрации, при том же объёме фильтра, отсюда ещё два недостатка: — нуждается в более частой чистке
  • — нужен более мощный вентилятор или даже два => более высокий уровень шума.

Самым распространённым, на данный момент, фильтром, является вариант в виде плоской прокладки перед вентилятором. Такой фильтр позволяет содержать в относительной чистоте, как сам вентилятор, так и внутренности системного блока.

Наряду с простотой конструкции и лёгкостью очистки фильтра, ему присущи недостатки. Вследствие малой площади таких фильтров (80×80=6400mm2), для создания значимого воздушного потока производителям приходится уменьшать их сопротивление потоку, увеличивая размер его ячеек. Частота очистки такого фильтра выше, чем если бы стоял фильтр большей площади.

Рассмотрим вопрос согласования вентилятора и фильтра с точки зрения теории. Работу любого вентилятора можно представить графиком, который называют характеристикой вентилятора (Fan Perfomance Curves). Характеристика представляет собой кривую, показывающую зависимость производительности вентилятора и создаваемого им давления. Ниже изображена характеристика для 3-х вентиляторов марки EC-8025xxxx (Low, Middle, High) производства Evercool.

Более подробно с вентиляторами и их работой можно познакомиться в статьях «Выбор корпусных вентиляторов» и «Ликбез по системам охлаждения. Занятие второе».

Для удобства рассмотрения рабочих характеристик вентилятора и фильтра, представим их в виде прямых. Реальная характеристика фильтра имеет нелинейный вид. График 1 наглядно показывает, что при работе вентилятора без нагрузки (вхолостую P=0) он будет выдавать свою максимальную производительность M=max. Если вентилятор полностью закрыть, то, очевидно, его производительность будет равна нулю (M=0), при этом, он будет создавать своё максимальное давление воздуха (P=max). Характеристика фильтра показывает, что при увеличении давления воздушного потока, количество воздуха, проходящего через фильтр, будет увеличиваться.

Что изменится, если к вентилятору подсоединить фильтр? Материал фильтра обеспечивает дополнительное сопротивление потоку, поэтому получим некоторую рабочую точку 1 на нашем Графике 1. При загрязнении фильтра, сопротивление потоку воздуха будет увеличиваться, а значит производительность (количество воздуха) будет уменьшаться. Получим, что наша рабочая точка в процессе эксплуатации будет неуклонно двигаться в сторону уменьшения потока воздуха и увеличения создаваемого вентилятором давления. При полностью забитом фильтре получим нулевую производительность с максимальным давлением.

Правильный подбор вентилятора и фильтра выполняется для обеспечения заданных показателей производительности в течение определённого промежутка времени. Т.е. падение производительности со значения M11 до M12 допустимо, если количество воздуха M12 является достаточным для вентиляции корпуса и выполняется условие M1= M2+ M3 для Рисунка 2. Время, затрачиваемое на переход из точки 1 в точку 2, определит периодичность очистки фильтра. Величина потока M12 условна и может быть определена косвенно по ухудшению показателей охлаждения компонентов системного блока, а так же по началу появления пыли (подсос через щели).

Что делать, если величина потока воздуха M1 в самом начале недостаточна для полноценной вентиляции корпуса? Здесь может быть несколько путей решения проблемы:

1-й Вариант: Уменьшение сопротивления фильтра. Этого можно добиться, увеличивая площадь фильтра или меняя его материал (cм. График 1).

2-й Вариант: Установка дополнительных фильтров или вентиляторов. Здесь стоит рассмотреть два подварианта:

  • 1-й — установка ещё одного независимого фильтра. При этом общий поток вырастает, как и занимаемое фильтрами место.
  • 2-й — установка дополнительного вентилятора на уже имеющийся фильтр.

Как устанавливать, последовательно или параллельно? При последовательной установке, мы увеличим создаваемое ими давление, что нам и необходимо для преодоления сопротивления фильтра. Если принять сопротивление фильтра постоянным, то введение второго вентилятора можно отобразить на Графике 2 новой кривой и переходом рабочей точки из положения 1 в положение 2.

При установке двух вентиляторов параллельно, мы увеличиваем их суммарную производительность. На графике 3 изображена новая характеристика для фильтра с двумя параллельными вентиляторами. Сравнивая Графики 2 и 3 можно сделать вывод о том, что последовательное включение вентиляторов, при наличии сопротивления, даёт больший прирост производительности фильтра.

3-й Вариант: Установка более производительного вентилятора. Более высокая производительность может быть обеспечена как большими оборотами крыльчатки, так и выбором вентилятора с крыльчаткой, лопасти которой имеют больший угол атаки. Кроме того, можно обратить свой взгляд на вентиляторы большего типоразмера, например 120-ти мм-е.
Сравнивая характеристики 80-ти м 120-ти мм-х вентиляторов, можно сделать интересный вывод о том, что давление, создаваемое 120-ти мм-и вентиляторами, практически то же, что и у 80-ти мм-х, а их основное отличие состоит в производительности. Для создания более высокого давления можно найти вентиляторы центробежного типа.

Для удобства дальнейшей работы с характеристиками, перенесём их на один график. По Графику 4 можно сделать вывод о том, что при сопоставимых параметрах (размер, шум, мощность) вентиляторов 8025M и SB-E(M), последний может создавать поток с большим давлением, при этом имея меньшую максимальную производительность.

Фильтрующий материал имеет много характеристик, одна из которых воздухопроницаемость. На этом сайте воздухопроницаемость различных фильтровальных материалов указывается при разности давлений 50Па в единицах дм3/м2с. Эта величина показывает, какое количество воздуха будет проходить через один квадратный метр материала за одну секунду при разности давлений в 50Па. В зависимости от типа материала, она может меняться в широком диапазоне.

Произведём необходимые вычисления для выяснения производительности фильтра при разных значениях площади материала, а значит и размерах фильтра. Возьмём для расчёта материал со средней воздухопроницаемостью равной 300 дм3/м2с. Переведём 50Па в миллиметры водяного столба (mmH2O) с помощью утилит (Uconner или Convert). В mmH2O величина составит 5,09. Переведём дм3/м2с в CFM/m2 (кубические дюймы в минуту на один квадратный метр). В одном футе 30,48 сантиметров. Значит, в одном кубическом футе помещается 30,483=28316,85 кубических сантиметров, или 28,32 кубических дециметров (10см=1дециметр). В одной минуте 60 секунд. Получим формулу перевода величин X=Y/28,32*60=2,12*Y, где Y величина в дм3/м2с, а X в CFM/m2. Получаем, что 300 дм3/м2с составляют 635.59 CFM/m2.

Возьмём для рассмотрения два вида фильтров. Первый в виде квадратного куска материала, а второй в виде мешка, изображённых на Рисунке 5.

Площадь квадратного фильтра составит 80*80=6400mm2, что составляет 0,0064м2. Площадь мешка зависит от его формы. Рассмотрим идеальный вариант, когда мешок представляет собой цилиндр с дном в виде круга. Общую площадь такого мешка можно посчитать по формуле Sмешка=3,1416*D*L+(3,1416*D2)/4. С учётом того, что диаметр взятого для примера мешка равен 80мм (0,08м) формула примет вид Sмешка=3,1416*0,08*L+(3,1416*0,082)/4)=0,2513*L+0,0050(m). Посчитаем площадь нескольких фильтров для L = 10, 20 и 30 сантиметров и занесём данные в Таблицу 1. Для каждого значения площадей фильтров вычислим пропускаемый ими поток воздуха, зная, что один квадратный метр нашего материала при разности давлений 5,09 mmH2O пропускает за минуту 635,59 кубических фута воздуха. Таблица 1.

ФильтрПлоскийВ виде мешка
Размеры80x80mmL=10cmL=20cmL=30cm
Площадь, m20.00640.0300.0550.080
Поток воздуха, CFM4.06719.06834.95750.847

Как уже упоминалось, воздухопроницаемость материала указана для давления 5,09 mmH2O. Нанесём полученные данные для нескольких фильтров на График 5. Кривые воздушной проницаемости фильтров будем строить в виде прямых, допуская, что в первом приближении они имеют линейный вид.

Выводы, которые можно сделать по этому графику: во-первых, вполне очевидно, что имея материал и вентиляторы, можно собрать фильтр, который будет обеспечивать корпус определённым количеством воздуха. Например, для фильтра, сделанного из выбранного материала с размером мешка 20 см и вентилятором 8025M, производительность составит 10 CFM (кубических футов в минуту). Во-вторых, размер фильтра влияет на сопротивление, которое он будет оказывать потоку воздуха. Если сделать фильтр из выбранного материала в виде квадрата размером 80х80, то пропускная способность с тем же вентилятором составит примерно 2 CFM, что, конечно же, будет недостаточно для полноценной вентиляции корпуса. Отсюда следует, что при применении одних и тех же вентиляторов для повышения производительности имеет смысл максимально увеличивать площадь фильтра, тем самым повышая периодичность его очистки. В третьих, вентиляторы центробежного типа имеет смысл применять только с фильтрами большого сопротивления, в противном случае производительность такого фильтра будет меньше, чем с использованием обычного вентилятора.
Выше была рассмотрена работа фильтров без учёта сопротивления, создаваемого корпусом. Очевидно, что работа фильтра будет максимально эффективной, когда сопротивление корпуса будет минимальным. Для обеспечения этого условия имеет смысл оформлять различного рода блоухолы и устанавливать вентиляторы на выдув, не забывая, что эффективность работы такой схемы достигается только при условии прохождения через фильтры всего воздуха, поступающего в системный блок.
Перейдём от теории к практике. Первый вариант модификации компьютера был предпринят на моём первом компьютере на базе Intel Pentium 233. Сейчас он работает сервером небольшой локальной сети.

Была выбрана схема изображённая на Рисунке 3. Было перепробовано несколько комбинаций материалов и вентиляторов (вплоть до 220-ти вольтовых). В конечном счёте, самым эффективным вариантом оказался вариант с двумя обычными 80-ти мм. вентиляторами и мешком из лавсанового полотна впечатляющих размеров. Как было выяснено позднее, производительности одного вентилятора на 80 мм вполне хватает для продувки мешка, вдвое меньшей площади.

В передней стенке компьютера, включая панель, соосно были прорезаны два отверстия под 80-ти мм-й вентилятор. Из куска «ДСП» было выпилено кольцо толщиной 20мм с внешним и внутренним диаметрами 78 и 111 мм соответственно. Оба вентилятора крепились к передней стенке компьютера через кольцо с помощью шпилек с резьбой, на которые с двух сторон накручивались гайки.

Мешок из полотна фиксировался на кольце с помощью автомобильного хомутика. Вентилятор блока питания был включен через сопротивление, для того, чтобы его производительность была меньше производительности фильтра. Т.к. данный вариант подразумевал активное загрязнение вентиляторов фильтра, их подшипники скольжения были заменены на подшипники качения, для увеличения ресурса работы вентиляторов.

Последние два года компьютер работает практически без выключений. Если сделать фотографию внутренностей поближе, то вы там пыли не увидите, даже на вентиляторе процессора. Хотите верьте, хотите нет, но он перед фотографированием не пылесосился.

Как можно увидеть, материал фильтров приобрёл серый цвет, особенно хорошо это видно в сравнении с новым фильтром.

За 4 года эксплуатации мешок вытряхивался только два раза. Первый раз примерно год или полтора назад, а последний раз после получения этих фотографий. На фотографии ниже, показано содержимое мешка. Пыли немало, но место для неё, ещё есть.

Если мешок вывернуть наизнанку, то там даже можно найти некоторую живность. Вот вам ещё один плюс такой системы :-)

С появлением компьютера на базе Athlon 900 появилась возможность продолжить эксперименты. На этот раз за основу была взята схема Рисунка 4. Отличительной особенностью этого варианта была установка вентилятора после материала фильтра. После недолгих экспериментов с программой AutoCAD была получена 3-х мерная графическая модель фильтра.

По задумке, воздух с пылью должен был засасываться в фильтр снаружи, а затем выбрасываться вентиляторами внутрь корпуса. В отличие от модели, материал фильтра для увеличения площади было решено выполнить в виде 3-х кратно вложенного конуса. Ниже показан такой фильтр в разрезе.

Чтобы поток воздуха, проходящего через фильтр, был хорошим, пришлось на каждый конус ставить по 2 вентилятора. Для уменьшения шума, создаваемого взаимным влиянием двух вентиляторов, они были разделены кольцом, выпиленным из ДСП. В реальном воплощении было принято решение поставить два таких фильтра. В верхней части корпуса создавался поток для охлаждения 5.25″ устройств. В нижней части получался направленный поток для плат расширения. Кожухи фильтров были выполнены из цветочных горшков, которые притягивались к корпусу скобками, при этом зажимая материал фильтра.

У этого варианта реализации было выявлено два существенных недостатка:

  1. Конусы усиливали шум вентиляторов, по принципу работы рупора. Система была достаточно эффективной, но очень шумной.
  2. Процесс снятия и установки фильтров был крайне неудобен.

Склоняюсь к выводу, что это были не недостатки предложенной схемы, а скорее результаты неудачного варианта её реализации. В итоге, я вернулся к варианту, изображённому на Рисунке 3 и описанному в статье «Мод моего компа – воздушный фильтр».

В этом варианте воздух поступает в корпус практически тем же путём, с той лишь разницей, что сначала проходит вентиляторы. Воздух из корпуса выбрасывается из блока питания, мобилреков и самодельного воздухоотвода на процессоре. Из достоинств этой схемы стоит отметить её простоту и лёгкость доступа к фильтрам. Из недостатков: тёплый воздух, выходящий через заднюю стенку, частично засасывается снова в верхний задний фильтр. В нижней части не создаётся направленного потока на платы расширения, включая видеокарту. Для корпуса подруги была изготовлена более утончённая система, т.к. места было немного. Процесс изготовления системы описан в статье «Мод для подруги на тему фильтрации воздуха».

Эффективность работы всех вышеописанных фильтров определялась очень просто. Спустя некоторое время работы открывался системный блок и производилась его ревизия на предмет возникновения пыли. Даже её небольшого количества хватало для вывода, что схема работает не так, как надо. После этого в систему вносились необходимые изменения и процесс определения эффективности работы повторялся. При этом должное внимание уделялось тепловому режиму системного блока, ведь никому не нужен пусть даже стерильный, но сгоревший или глючащий компьютер.

Этими словами заканчиваю свою трилогию статей по фильтрации. Надеюсь, эти статьи будут полезны начинающим экспериментаторам в этой области.

С уважением, DustKiller

Ждём Ваших комментариев в специально созданной ветке конференции.

Проверка резонатора

Communities Лада Приора Lada Priora Club Blog Micro FAQ 2. Проверка работоспособности крышки расширительного бачка

При выявлении перечисленных выше неполадок, каждый автомобилист должен знать, как проверить резонатор. Это позволит не только нормализовать работу двигателя и системы выпуска выхлопных газов, но и повысить комфорт использования машины, в том числе для окружающих людей.

Для проверки вам понадобится смотровая яма (если ее нет, можно поднять машину домкратом). Диагностика выполняется при помощи визуального осмотра. В процессе необходимо внимательно осмотреть целостность как самого устройства, так и присоединенных к нему труб (особенно на их стыках).

Явным признаком неполадки является образование конденсата в остывающем резонаторе, после чего он начинает капать на землю. Это означает, что его корпус потерял герметичность и подлежит ремонту, а лучше замене. Проверить наличие конденсата можно через некоторое время, когда заглушили мотор (чтобы дать корпусу резонатора остыть)

Обратите внимание! Некоторые автолюбители при самостоятельном изготовлении резонаторов специально просверливают в его корпусе отверстие для отвода влаги. Поэтому, если вы купили автомобиль с подобным резонатором, то такой метод проверки для вас не подойдет

Также целостность корпуса резонатора можно определить по наличию выхлопных газов, выходящих из него. Это также говорит о разгерметизации и необходимости его замены. Данный факт можно проверить при работающем двигателе автомобиля, заглянув под днище. Для уверенности можно попросить помощника одновременно “погазовать”, чтобы через систему прошло большее количество выхлопных газов. Также подозрение на разгерметизацию вызывает появление дыма из-под днища машины во время езды или при стоянке с включенным двигателем.

Функции резонатора и необходимость его наличия

Резонатор приора
Резонатор является неотъемлемой частью выхлопной системы. Он отвечает за точное по времени удаление из камеры силового агрегата уже отработанных газов, соответственно, освобождая камеру для новых.

Большинство профессионалов полагает, что исключительно качество резонатора определяет полезную и возможную к получению мощность двигателя. Именно по этой причине спортивные авто с высокими мощностными характеристиками являются модернизированными в части замены штатных (стандартных) резонаторов на более совершенные варианты.

Резонатор расположен за прямотоком, что обеспечивает его способность принимать основной объем токсичных и высокотемпературных газов. Несложно понять, что высококачественная работа резонатора прямо влияет на улучшение ходовых свойств автомашины.

Устройство резонатора

Communities ВАЗ Ремонт и Доработка Blog Чистка дроссельной заслонки ВАЗ 2115. Неисправный лямбда зонд датчик кислорода

Конструктивно резонатор состоит из перфорированной (просверленной по всей длине в пределах устройства) трубы, помещенной в металлический корпус. Также в конструкции есть дроссельное отверстие, предназначенное для повышения эффективности гашения волновых колебаний в трубе. Внутренняя полость резонатора разделена на две или более неравные части перегородками, расположенными в поперечной плоскости к трубе. Также в конструкцию более современных выхлопных резонаторов входит теплоизоляция и/или звукоизоляция (зачастую это один и тот же материал), расположенная под корпусом и предназначенная для снижения его температуры и/или звуков, исходящих из устройства.

Внутреннее устройство резонатора

Внутренние полости имеют неодинаковый объем с тем, чтобы обеспечивать периодическое сужение и расширение потока отработанных газов, что в свою очередь дает выравнивание их неравномерной пульсации. То есть, каждая камера имеет свою резонансную частоту. Кроме этого они имеют небольшое смещение относительно оси корпуса. Это необходимо для достижения смены направления потока выхлопов. А внутренняя перфорация на трубе нужна для гашения большой амплитуды звуковых волн, которые вырабатывают газы.

На эффективность работы резонатора влияют следующие факторы:

  • степень его изношенности, герметичность;
  • уровень загрязненности от нагара (чем чище, тем эффективнее);
  • диаметр (чем больший диаметр устройства, тем больший у него КПД).

Как выбрать правильный угольный фильтр?

При покупке угольного фильтра очистки запаха обращайте внимание на его качество, для этого необходимо убедится в наличие у продавца сертификатов, подтверждающих качество. Его производительность должна соответствовать аналогичному показателю у вентилятора, а лучше даже превышать ее. Поскольку при наличии запаса производительности вы продлите срок службы своего фильтра минимум в 1,5, а то и в 2 раза. К примеру, если объем канала вашей вентиляции 250 м3, а вы поставите на него фильтр 500 м3, тем самым вы увеличите срок его эксплуатации в 2 раза.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]