картридж турбокомпрессора

Электро турбина: характеристики, принцип действия, плюсы и минусы работы, советы по установке своими руками и отзывы владельцев

Обладатели турбомоторов часто задаются вопросом касательно необходимости охлаждения турбины перед тем, как заглушить мотор. Подобное охлаждение предполагает несколько минут работы ДВС на холостом ходу. Для получения точного ответа необходимо выяснить, в каких условиях работает турбокомпрессор двигателя. Отработавшие газы несут в себе большое количество полезной энергии, которая получена в результате сгорания топлива в цилиндрах. Перенаправление потока выхлопа на турбинное колесо позволяет реализовать эффективный привод для компрессора. Так удается получить нагнетание воздуха под давлением без отбора мощности у ДВС, что принципиально отличает турбокомпрессор от механического нагнетателя.

Рекомендуем также прочитать статью о том, как самому проверить турбину дизельного двигателя. Из этой статьи вы узнаете о различных способах диагностики нагнетателя своими руками.

Турбонагнетатель является осью, на концах которой присутствуют колеса с лопатками. Выделяют турбинное и компрессорное колесо. Указанные колеса находятся в специальных корпусах. Нагнетатель ставится в выпускном тракте, так как турбинное колесо вращается от контакта с отработавшими газами. Такое вращение позволяет компрессорному колесу вращаться параллельно, засасывать и сжимать воздух для подачи в цилиндры двигателя.

Ремонт турбины в Москве

Ремонт турбины дизельного двигателя автомобиля достаточно сложный технический процесс, который требует от специалиста профессиональных навыков и большого опыта в данном деле, а также использования специального компьютерного оборудования для выполнения проверок.

Выполнять ремонт турбины дизельного двигателя своими руками мы настоятельно не рекомендуем, даже если Вы уверены в собственных профессиональных навыках. Желание сэкономить никогда хорошим не заканчивается. Для ремонта необходимы специальные инструменты, оборудование и навыки, особенно. Помните, что скупой платит дважды. Обращайтесь к специалистам, только там Вы сможете получить квалифицированную и профессиональную помощь по разумным ценам.

Характеристика основных параметров номинальных значений

  • Номинальная мощность турбины
    — наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.
  • Экономическая мощность турбины
    — мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или больше её на 10-25 %.
  • Номинальная температура регенеративного подогрева питательной воды
    — температура питательной воды за последним по ходу воды подогревателем.
  • Номинальная температура охлаждающей воды
    — температура охлаждающей воды при входе в конденсатор.

Паровая турбина ЗуГРЭС. СССР, 1930-е

Причины выхода из строя турбины

Если Вы обнаружили первые признаки неисправности узла, не торопитесь бежать в магазин за покупкой нового турбокомпрессора для Вашего автомобиля. Необходимо сначала выяснить источник проблемы, а как показывает практика, чаще всего это внешние факторы. В основном неправильная эксплуатация или несвоевременное техническое обслуживание. Однако, если неполадки не устранить, то это приведет к выходу из строя нового либо восстановленного узла . Турбина редко выходит из строя из-за отработанного ресурса.

Причины поломки турбокомпрессора:

  1. Несвоевременное обслуживание
  2. Плохое качество масла
  3. Масляное голодание
  4. Попадание внутрь агрегата или в крыльчатку мусора
  5. Регулярные повышенные нагрузки и перегрев

Несвоевременное обслуживание

Игнорирование сроков замены моторного масла и фильтров обычно приводит к неполадкам. Масло необходимо менять чаще чем нужно. Турбина дизельного двигателя не любит больших интервалов между заменами масло. Оптимально – это не больше 10 тыс. км, однако, если машина эксплуатируется постоянно в городской среде, где много пыли, интервал лучше сократить 15-20%.

Некачественное масло

Некачественное масло, а также присутствие в нем посторонних частиц обычно становится причиной образования задиров на поверхности подшипников.

Откуда берется мусор:

  • Частички металла в результате повреждения подшипникового узла;
  • Некачественное моторное масло;
  • Забитый масляной фильтр;
  • После некачественного ремонта двигателя.

Масляное голодание

Серьезная проблема, которая зачастую приводит к проблемам с турбиной дизельного двигателя. Даже незначительный дефицит смазки на пару секунд приводит к сильным повреждениям подшипников узла. Такое явление происходит по вине сами автовладельцев.

Помните, что прежде чем заглушить мотор автомобиля после долгой поездки, дайте ему поработать на холостом ходу 1-2 минуты, чтобы она остыла.

Зачем это нужно? Необходимо это для того, чтобы агрегат остыл, скорость вращения его может достигать 180 тыс. об. в минуту. И заглушив мотор, давление масла моментально упадет, и узел останется без смазки на пару секунд. Ремонт турбины дизельного двигателя

Повреждения

Повреждения, в следствии попадания мусора и посторонних предметов внутрь узла. Они хорошо видны при визуальном осмотре, на колесе агрегата. Любые твердые частицы, которые даже не видны глазом повреждают ротор турбокомпрессора.

Попадание инородных частиц в улитку или корпус вызывает разрушение лопастей ротора. С такими повреждениями она не должна работать ни при каких условиях.

Перегрев турбины двигателя

Чрезмерные нагрузки на нее приводят к сильному нагреву, и в конечном итоге перегреву. Температура под нагрузкой может достигать 900 градусов. Перегрев может случится также в результате недостаточного охлаждения узла из-за постоянных, частых включениях и отключениях двигателя. Все это приводит к отложениям углерода на турбонагнетателе и в масляных трубках, повышенному износу подшипника со стороны узла и уплотнительных колец.

Рабочее состояние дизельного двигателя автомобиля напрямую влияет на исправность агрегата.

Проблемы турбины на дизеле

Как показывает практика, в автомобилях с дизельным двигателем узел выходит из строя чаще всего по двум причинам:

  • Некачественное масло;
  • Недостаток масла.

Дизельные двигатели при эксплуатации в городе зачастую практически не прогреваются, т.к. не успевают прогреваться, особенно зимой. А многочисленные запуски мотора, приводят к тому, что ротор вращается практически без смазки. Особенно, если автовладелец не соблюдает или затягивает со сроками замены моторного масла и фильтров. В итоге, первые признаки с неисправностями узла могут появиться при 100-150 тыс. км. пробега.

Помните, что растущее трение ведет к сильному износу и серьезным неполадкам в работе турбины дизельного двигателя. Ремонт в таком случае будет нужен однозначно. Именно поэтому важно значит источник проблемы и когда необходимы ремонтные работы.

Система охлаждения турбины турбореактивного двигателя

Система охлаждения турбины турбореактивного двигателя содержит последовательно установленные коллектор с управляемыми клапанами на выходе, сообщенный своим входом с воздушной полостью камеры сгорания, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловой аппарат закрутки и каналы охлаждения рабочего колеса. Для двухконтурного турбореактивного двигателя система охлаждения снабжена воздухо-воздушным теплообменником, размещенным в воздушном тракте наружного контура. Сообщение коллектора с воздушной полостью камеры сгорания выполнено через охлаждаемые каналы теплообменника. Между выходом коллектора и многоканальным воздуховодом установлен дополнительный коллектор. Каждый канал воздуховода образован дефлектором, установленным в сопловой лопатке вдоль ее внутренней поверхности. Выходной канал соплового аппарата закрутки повернут в сторону вращения рабочего колеса, причем средняя линия этого колеса образует с продольной осью двигателя угол в интервале 60-85o. Изобретение позволяет снизить температуру рабочего колеса турбины и связанного с ним уменьшения радиального зазора между статором и рабочим колесом. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области авиадвигателестроения, а именно к системам охлаждения турбин ТРД.

Известна система охлаждения турбины ТРД [1].Из известных систем охлаждения наиболее близкой к предложенной является система охлаждения турбины ТРД, содержащая последовательно установленные коллектор с управляемыми клапанами на выходе, сообщенный своим входом с воздушной полостью камеры сгорания, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловой аппарат закрутки и каналы охлаждения рабочего колеса [2].В указанной системе элементы турбины охлаждаются воздухом, отобранным за последней ступенью компрессора, который имеет самый высокий уровень температуры в газовоздушном тракте двигателя. Этот воздух подается на охлаждение рабочих лопаток через диск рабочего колеса в его средней и периферийной зонах. С другой стороны, теплоподвод к диску происходит из газовоздушного тракта турбины через рабочие лопатки и их замковую часть. Высокая температура охлаждающего воздуха приводит к росту температуры периферийной и средней зоны при относительно «холодной» ступице диска. Такая неравномерность температур в диске приводит к высокому уровню напряжений в нем, что уменьшает ресурс двигателя на максимальных режимах. Кроме того, высокая температура элементов рабочего колеса приводит к их значительным температурным расширениям, вследствие чего увеличивается радиальный зазор между статором и рабочим колесом.Задачей изобретения является снижение температуры рабочего колеса турбины и связанного с ним уменьшения радиального зазора между статором и рабочим колесом. В схеме одноконтурного двигателя нет возможности снизить температуру воздуха, подаваемого на охлаждение рабочего колеса турбины, хотя имеется достаточный запас по давлению.Наличие аппарата закрутки позволяет частично снизить температуру воздуха, подаваемого к рабочему колесу в том случае, когда воздух выпускается в направлении вращения рабочего колеса. В большей степени снижение температуры без использования дополнительного рабочего тела может быть осуществлено в схеме широко применяемых двухконтурных турбореактивных двигателей.Указанная задача решается тем, что известная система охлаждения турбины ТРД, содержащая последовательно установленные коллектор с управляемыми клапанами на выходе, сообщенный своим входом с воздушной полостью камеры сгорания, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловой аппарат закрутки и каналы охлаждения рабочего колеса, для двухконтурного турбореактивного двигателя снабжена воздухо-воздушным теплообменником, размещенным в воздушном тракте наружного контура, сообщение коллектора с воздушной полостью камеры сгорания выполнено через охлаждаемые каналы теплообменника, между выходом коллектора и многоканальным воздуховодом установлен дополнительный коллектор, при этом каждый канал воздуховода образован дефлектором, установленным в сопловой лопатке вдоль ее внутренней поверхности, а выходной канал соплового аппарата закрутки повернут в сторону вращения рабочего колеса, причем средняя линия этого канала образует с продольной осью двигателя угол в интервале 6085o. При этом теплообменник выполнен в виде отдельных секций, равномерно распределенных по периметру наружного контура двигателя. Дефлектор может быть выполнен перфорированным, а полость, образованная дефлектором и внутренней поверхностью сопловой лопатки, через щель в задней кромке сообщена с газовоздушным трактом турбины.Наличие теплообменника, размещенного в наружном контуре, вход которого по охлаждаемому тракту сообщен с воздушной полостью камеры сгорания, а выход — с воздуховодом, позволяет значительно снизить температуру охлаждающего воздуха.Выполнение воздуховода в виде дефлектора, установленного в сопловой лопатке вдоль ее внутренней поверхности, приводит, с одной стороны, к снижению потерь давления охлаждающего воздуха, что частично компенсирует потери давления в теплообменнике, а с другой снижает подогрев транзитного воздуха от сопловых лопаток.В результате имеем минимальные потери давления в охлаждающем тракте при значительном снижении температуры охлаждающего воздуха, подаваемого в аппарат закрутки. Высокое давление воздуха, подаваемого в аппарат закрутки, обеспечивает высокую скорость этого воздуха в его выходных каналах, что приводит к дополнительному снижению его температуры. При этом максимальное снижение температуры реализуется в случае подачи воздуха в направлении вращения рабочего колеса в диапазоне углов 6085o.На фиг.1 показан продольный разрез двигателя с системой охлаждения; на фиг.2 — поперечное сечение сопловой лопатки с дефлектором; на фиг. 3 — поперечное сечение сопловой лопатки с перфорированным дефлектором; на фиг.4 — сечение по сопловому аппарату закрутки и рабочему колесу; на фиг.5 — вид по стрелке С на секции теплообменника.Система охлаждения ТРД содержит коллектор 1 с управляемыми клапанами 2, воздушную полость 3 камеры сгорания 4, многоканальный воздуховод 5, проходящий через внутренние полости 6 сопловых лопаток 7, сопловой аппарат закрутки 8, каналы охлаждения 9 рабочего колеса 10 турбины. Система охлаждения снабжена воздухо-воздушным теплообменником 11, размещенным в воздушном тракте 12 наружного контура 13. Сообщение коллектора 1 с воздушной полостью 3 камеры сгорания 4 выполнено через охлаждаемые каналы 14 теплообменника 11, а между выходом коллектора 1 и многоканальным воздуховодом 5 установлен дополнительный коллектор 15, при этом каждый канал 16 воздуховода 5 образован дефлектором 17, установленным в сопловой лопатке 7 вдоль ее внутренней поверхности 18.Выходной канал 19 соплового аппарата закрутки 8 повернут в сторону вращения рабочего колеса 10, причем средняя линия 20 канала 19 образует с продольной осью 21 двигателя угол в интервале 6085o. Сопловой аппарат закрутки 8 и рабочее колесо 10 образуют переднюю думисную полость 22 турбины. Рабочее колесо содержит каналы охлаждения 9 и рабочую лопатку 23, торец 24 которой отделен от статора 25 радиальным зазором 26. Теплообменник 11 выполнен в виде отдельных секций 27, равномерно распределенных по периметру 28 наружного контура 13. Для высокотемпературных ТРД дефлектор 17 выполнен перфорированным отверстиями 29, а полость 30, образованная дефлектором 17 и внутренней поверхностью 18 сопловой лопатки 7 через щель 31 в задней кромке 32 сообщена с газовоздушным трактом 33 турбины.Система охлаждения ТРД работает следующим образом.Воздух из воздушной полости 3 камеры сгорания 4 поступает в охлаждаемые каналы 14 теплообменника 11, где он охлаждается более холодным воздухом воздушного тракта 12 наружного контура 13. После охлаждения воздух поступает в коллектор 1 по всему периметру. Далее из коллектора 1 воздух поступает через клапаны 2 в дополнительный коллектор 15, в котором он также распределяется по всему периметру, что позволяет равномерно запитать им многоканальный воздуховод 5. Воздух проходит через внутренние полости дефлекторов 17 сопловых лопаток 7 и поступает в сопловой аппарат закрутки 8, а из него выбрасывается в переднюю думисную полость 22 турбины. Давление в думисной полости 22 равно давлению в газовоздушном тракте 33 и значительно ниже уровня входного давления в сопловом аппарате закрутки 8. Выбрасывая охлаждающий воздух через выходные каналы 19 соплового аппарата закрутки 8, расширяют воздух до скорости, при которой статическое давление разгоняемого потока равно давлению в думисной полости 22. При таком расширении потока с падением давления падает и температура потока. Направляя поток разгоняемого воздуха в сторону вращения рабочего колеса, в относительном движении принимают охлаждающий поток воздуха в рабочее колесо 10 с более низкой температурой, чем была температура на входе в сопловой аппарат закрутки 8. Изменяя углы поворота потока , можно изменять уровень температуры воздуха в охлаждающем тракте 9 рабочего колеса 10. При угле 60o реализуется режим «умеренного» охлаждения, а при угле 85o — режим «большого» охлаждения, дальнейшее увеличение угла большего 85o — ограничено технологическими возможностями, а угол , меньший 60o — температурной целесообразностью. Далее воздух поступает в каналы охлаждения 9 рабочего колеса 10, охлаждает его до уровня температур, близкого к температуре поступающего воздуха. Из каналов охлаждения 9 воздух, охладив рабочие лопатки, выбрасывается в газовоздушный тракт турбины.Выполнение теплообменника в виде отдельных секций упрощает сборку и повышает ремонтопригодность, распределение секций по периметру наружного тракта улучшает условия обтекания секций, повышая их эффективность.В случае применения дефлектора на высокотемпературных турбинах наилучший эффект по уменьшению потерь давления и снижению подогрева транзитного воздуха в сопловых лопатках достигается, если дефлектор выполняется перфорированным.Установка дополнительного коллектора обеспечивает равномерное распределение охлаждающего воздуха по внутренним полостям дефлекторов независимо от количества сопловых лопаток и количества управляемых клапанов.Охлаждение воздуха в теплообменнике, транспортировка его с минимальными потерями давления и подогрева через сопловые лопатки, а также расширение воздуха в передней думисной полости в направлении вращения приводит к значительному снижению температуры охлаждающего воздуха, что в свою очередь уменьшает температуру рабочего колеса, увеличивая тем самым ресурс и надежность ТРД. Понижение уровня температуры рабочего колеса уменьшает его расширение и позволяет уменьшить радиальный зазор между торцом лопатки и статором, увеличить КПД турбины и повысить экономичность двигателя.Источники информации 1. Патент США 4807433, НКИ 60-39.29, опубл. 1989 г.2. Патент РФ 2159335, МКИ F 01 D 25/12, опубл. 2000 г.

Формула изобретения

1. Система охлаждения турбины, содержащая последовательно установленные коллектор с управляемыми клапанами на выходе, сообщенный своим входом с воздушной полостью камеры сгорания, многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловой аппарат закрутки и каналы охлаждения рабочего колеса, отличающаяся тем, что для двухконтурного турбореактивного двигателя она снабжена воздухо-воздушным теплообменником, размещенным в воздушном тракте наружного контура, сообщение коллектора с воздушной полостью камеры сгорания выполнено через охлаждаемые каналы теплообменника, между выходом коллектора и многоканальным воздуховодом установлен дополнительный коллектор, при этом каждый канал воздуховода образован дефлектором, установленным в сопловой лопатке вдоль ее внутренней поверхности, а выход канала соплового аппарата закрутки повернут в сторону вращения рабочего колеса, причем средняя линия этого канала образует с продольной осью двигателя угол в интервале 60-85o.2. Система охлаждения турбины по п. 1, отличающаяся тем, что теплообменник выполнен в виде отдельных секций, равномерно распределенных по периметру наружного контура двигателя.3. Система охлаждения турбины по п. 1, отличающаяся тем, что дефлектор выполнен перфорированным, а полость, образованная дефлектором и внутренней поверхностью сопловой лопатки, через щель в задней кромке сообщена с газовоздушным трактом турбины.

РИСУНКИ

,

,

,

,

PC4A — Регистрация договора об уступке патента СССР или патента Российской Федерации на изобретение

Прежний патентообладатель:Открытое акционерное общество «Научно-производственное объединение «Сатурн»

(73) Патентообладатель:Открытое акционерное общество «Научно-производственное объединение «Сатурн»

(73) Патентообладатель:Открытое акционерное общество «Уфимское моторостроительное производственное объединение»

Договор № РД0033747

зарегистрирован
12.03.2008
Извещение опубликовано: 27.04.2008 БИ: 12/2008

Когда необходим ремонт турбины дизельного двигателя

Ремонт турбин дизельных двигателей нужно выполнять вовремя. Т.к. данный узел испытывает очень большие нагрузки при своей работе. В процессе работы температура может достигать 1000 градусов, и это при огромных нагрузках на нее. Чтобы сохранить узел в рабочем и исправном состоянии необходимо придерживаться правил эксплуатации двигателя.

Выход из строя агрегата сопровождается потерей мощности, течью масла, увеличенным расходом топлива и др признаками, которые более подробно рассмотрим ниже в статье. Чтобы избежать этих последствий и сохранить работоспособность узла, необходимо постоянно следить за ее состоянием, и соблюдать сроки технического обслуживания узла и двигателя автомобиля. Это позволит избежать лишних денежных затрат и Вам не нужно будет обращаться за ремонтом турбины дизельного двигателя в Москве.

Классификация паровых турбин

В этом разделе не хватает ссылок на источники информации.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 19 октября 2012 года

.

В зависимости от характера теплового процесса

паровые турбины подразделяются на 3 основные группы:

  • конденсационные — без регулируемых (с поддержанием давления) отборов пара;
  • теплофикационные — с регулируемыми отборами;
  • турбины специального назначения.

Конденсационные паровые турбины

Схема работы паротурбинной установки с конденсационной турбиной
Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор (отсюда возникло наименование), в котором поддерживается вакуум. Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора пропорциональна частоте электрического тока 50 Герц (синхронная машина). То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока является одним из главных показателей качества отпускаемой электрической энергии. Современные технологии позволяют поддерживать частоту сети с точностью до 0,2 % (ГОСТ 13109-97). Резкое падение электрической частоты влечёт за собой отключение от сети и аварийную остановку энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Паровые турбины для электростанций имеют парковый ресурс в 270 тыс. ч. с межремонтным периодом 4-5 лет.

Транспортные паровые турбины используются в качестве главных и вспомогательных двигателей на кораблях и судах. Неоднократно делались попытки применить паровые турбины на локомотивах, однако паротурбовозы распространения не получили. Для соединения быстроходных турбин с гребными винтами, требующими небольшой (от 100 до 500 об/мин) частоты вращения, применяют зубчатые редукторы. В отличие от стационарных турбин (кроме турбовоздуходувок), судовые работают с переменной частотой вращения, определяемой необходимой скоростью хода судна.

Схема работы конденсационной турбины:
Свежий (острый) пар из котельного агрегата (1)
по паропроводу
(2)
попадает на рабочие лопатки паровой турбины
(3)
. При расширении кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу
(4)
с электрическим генератором
(5)
. Отработанный (мятый) пар из турбины направляется в конденсатор
(6)
, в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой
(7)
пруда-охладителя, градирни или водохранилища по трубопроводу
(8)
направляется обратно в котельный агрегат при помощи насоса
(9)
. Бо́льшая часть полученной энергии используется для генерации электрического тока.

Теплофикационные паровые турбины

Схема работы паротурбинной установки с теплофикационной турбиной
Теплофикационные паровые турбины служат для одновременного получения электрической и тепловой энергии. Тепловые электростанции, на которых установлены теплофикационные паровые турбины, называются теплоэлектроцентралями (ТЭЦ). К теплофикационным паровым турбинам относятся турбины с:

  • противодавлением;
  • регулируемым отбором пара;
  • отбором и противодавлением.

У турбин с противодавлением весь отработанный пар используется для технологических целей (варка, сушка, отопление). Электрическая мощность, развиваемая турбоагрегатом с такой паровой турбиной, зависит от потребности производства или отопительной системы в греющем паре и меняется вместе с ней. Поэтому турбоагрегат с противодавлением обычно работает параллельно с конденсационной турбиной или электросетью, которые покрывают возникающий дефицит в электроэнергии.

В турбинах с регулируемым отбором часть пара отводится из одной или двух промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара поддерживается в заданных пределах системой регулирования (в советских турбинах для поддержания заданного давления чаще всего используется регулирующая диафрагма за камерой отбора — ряд направляющих лопаток, разрезанных по перпендикулярной оси турбины плоскости; одна половина лопаток поворачивается относительно другой, изменяя площадь сопел). Место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара.

У турбин с отбором и противодавлением часть пара отводится из одной или двух промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопительную систему или к сетевым подогревателям.

Схема работы теплофикационной турбины:
Свежий (острый) пар из котельного агрегата (1)
по паропроводу
(2)
направляется на рабочие лопатки цилиндра высокого давления (ЦВД) паровой турбины
(3)
. При расширении, кинетическая энергия пара преобразуется в механическую энергию вращения ротора турбины, который соединен с валом
(4)
электрического генератора
(5)
. В процессе расширения пара из цилиндров среднего давления производятся теплофикационные отборы и из них пар направляется в подогреватели
(6)
сетевой воды
(7)
. Отработанный пар из последней ступени попадает в конденсатор, где и происходит его конденсация, а затем по трубопроводу
(8)
направляется обратно в котельный агрегат при помощи насоса
(9)
. Бо́льшая часть тепла, полученного в котле используется для подогрева сетевой воды.

Паровые турбины специального назначения

Паровые турбины специального назначения обычно работают на отбросном тепле металлургических, машиностроительных, и химических предприятий. К ним относятся турбины мятого (дросселированного) пара, турбины двух давлений и предвключённые (форшальт).

  • Турбины мятого пара используют отработавший пар поршневых машин, паровых молотов и прессов, имеющих давление немного выше атмосферного.
  • Турбины двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней.
  • Предвключённые турбины представляют собой агрегаты с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих турбин направляют в другие с более низким начальным давлением пара. Необходимость в предвключённых турбинах возникает при модернизации электростанций, связанной установкой паровых котлов более высокого давления, на которое не рассчитаны ранее установленные на электростанции турбоагрегаты.
  • Также к турбинам специального назначения относятся и приводные турбины различных агрегатов, требующих высокой мощности привода. Например питательные насосы мощных энергоблоков электростанций, нагнетатели и компрессоры газокомпрессорных станций и т.д.

Часто стационарные паровые турбины имеют регулируемые или нерегулируемые отборы пара из ступеней давления для регенеративного подогрева питательной воды.

Паровые турбины специального назначения не строят сериями, как конденсационные и теплофикационные, а в большинстве случаев изготовляют по отдельным заказам.

Признаки неисправности турбины

Признаки неисправности турбокомпрессора дизельного двигателя:

  • Постоянный вой, шум, свист ее на холостом ходу и при повышении оборотов;
  • Увеличение расхода топлива;
  • Увеличение расхода масла;
  • Потеря мощности двигателя;
  • Черный либо сизый дым из выхлопной трубы.

Это основные признаки, по выявлению которых необходимо срочно обратиться в автотехцентр. Важно приехать на СТО, которое специализируется на ремонте и диагностике двигателей. Проведя полную и профессиональную диагностику силового агрегата можно выявить источник неисправности.

Если диагностика говорит о неисправности турбокомпрессора, специалисты автотех снимут ее и проведут весь комплекс работ по выявлению устранению проблем в работе турбокомпрессора.

Малые паровые турбины

В электроэнергетике под малыми генерирующими установками понимаются агрегаты мощностью менее 10 МВт. В настоящее время, в России, как и в других странах с рыночной экономикой, весьма остро стоит вопрос об электроснабжении предприятий и населенных пунктов в отдаленных территориях, где нет централизованного электроснабжения. Ибо прежние схемы с дизель-генерацией становятся крайне дорогими по мере роста цены на диз-толиво. Так же подчас остро стоит вопрос подключения к электроснабжению новых малых и средних предприятий, когда для них нет резервов электрических мощностей. В этом случае всегда определяется — что дешевле: строить новые сети до магистральных ЛЭП по подключаться к ним по тарифам местных энергетиков и далее получать энергию по их расценкам, или построить свою автономную малую электростанцию и быть полностью энергонезависимым. В этом случае малые паросиловые установки на дешевом твердом топливе всегда могут давать электроэнергию дешевле, чем энергетики предлагают получать из сети.

Но на таком пути автономного энергоснабжения всегда стоит вопрос о стоимости малой паросиловой установки. К сожалению — при уменьшении габаритных размеров паро-силовой установки с турбиной ее термодинамический КПД падает, а цена на 1 квт агрегатной мощности — растет. Так цена на паросиловые установки с паровыми турбинами на ORC цикле итальянского составляет около 3 тыс евро за 1 квт установленной мощности. И КПД такой дорогой установки по электричеству весьма невелик- всего 18%.

Попытки делать стандартные малые паросиловые установки с турбинами на водяном паре всегда упирались в мизерный КПД таких установок. Например- в книге Ф.Бойко «Паровозы промышленного транспорта» указано- что в середине 50-х годов турбогенаратор паровоза мощностью 1 квт расходовал на 1 квт-час мощности 100 кг пара (КПД- 1%%), а в книге П.Черняев «Судовые силовые установки и их эксплуатация» (учебник для вузов) — указано, что в середине 70-х годов главные паросиловые установки с турбинами достигли КПД в 35%, а вот малые судовые паросиловые агрегаты мощностью 15 — 50 квт (для привода вспомогательных судовых механизмов) расходовали до 30 кг пара в час на 1 квт мощности, что в 5 раз хуже, чем главная машина. Трудность достижения малыми турбинами высоких значений КПД, которые характерны для больших турбин, заключается в изменении соотношения скоростей истекающего из сопел пара и окружных скорости движения лопаток турбин, по мере уменьшения диаметров роторов малых турбин. Именно поэтому малые паровые турбины крайне редко применяются в автономной, распределенной электрогенерации.

Диагностика и ремонт турбины дизельного двигателя

Диагностика турбины осуществляется на специальном компьютерном стенде, а также визуальным осмотром, при демонтаже. Наш автосервис имеет в своем арсенале все необходимое для проведения качественной и профессиональной диагностики двигателя и турбины дизельного и бензинового авто любых моделей.

Диагностика турбины дизельного двигателя в себя включает:

  • Визуальный осмотр на наличие люфта и внешних повреждений;
  • Оценка работы крыльчаток;
  • Проверка на наличие течи масла через уплотнительные кольца.

После выполнения тщательной диагностики и обнаружения проблемных мест, производится ремонт. Как выполняется ремонт турбин дизельных двигателей:

  1. Производится диагностика;
  2. Разбирается для дефектовки;
  3. Все детали и комплектующие очищаются;
  4. Изношенные уплотнители, подшипники и детали меняются на новые;
  5. Выполняется балансировка ротора на специальном оборудовании;
  6. Проверяется картридж на наличие утечек и балансируется.

На специальных стендах производится имитация работы турбины Вашего дизельного двигателя. Проверка осуществляется во всех режимах: на холостом ходу, под нормальной нагрузкой, на повышенных оборотах.

Основные конструкции паровых турбин

Модель одной ступени паровой турбины
Паровая турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с соплами — неподвижная часть.

По направлению движения потока пара различают аксиальные паровые турбины, у которых поток пара движется вдоль оси турбины, и радиальные, направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения.

По числу цилиндров турбины подразделяют на одноцилиндровые и двух—трёх-, четырёх-пятицилиндровые. Многоцилиндровая турбина позволяет использовать бо́льшие располагаемые тепловые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные материалы в частях высокого давления и раздвоение потока пара в частях среднего и низкого давления. Такая турбина получается более дорогой, тяжёлой и сложной. Поэтому многокорпусные турбины используются в мощных паротурбинных установках.

По числу валов различают одновальные, двувальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как соосным, так и параллельным — с независимым расположением осей валов.

  • Неподвижную часть — корпус (статор) — выполняют разъёмной в горизонтальной плоскости для возможности выемки или монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъём которых совпадает с плоскостью разъёма корпуса турбины. По периферии диафрагм размещены сопловые каналы (решётки), образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему.
  • В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек пара наружу (со стороны высокого давления) и засасывания воздуха в корпус (со стороны низкого). Уплотнения устанавливают в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень в обход сопел.

На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]