Осмотр и подготовка блока цилиндров двигателя К4М к сборке

У каждого автолюбителя есть свои причины, по которым он хочет «поднять» мощность своего железного «коня». Кто-то увлекается автогонками, кто-то просто обожает быструю езду. Есть множество способов увеличения мощности двигателей: различие каждого метода заключается в основном в стоимости модернизации силового агрегата. Но прежде чем выбрать какой-либо способ, стоит не забывать, что подобные переделки серийных автомобилей увеличивают расход горючего, а в ряде случаев и сокращают срок эксплуатации. И все же, как увеличить мощность двигателя? Далее рассматривается несколько способов, начиная от наиболее распространенных и заканчивая менее известными.

Увеличение объема

Чтобы этого добиться, на одинаковое расстояние растачивают цилиндры, увеличивая тем самым их объем. Метод этот довольно распространенный и не особо дорогой. Действительно, количество лошадиных сил возрастает и крутящий момент увеличится, но ненамного. К тому же впускная и выпускная системы не смогут эффективно работать, т. к. из-за увеличенного объема у них не хватит «сил» как и раньше наполнять цилиндры топливом и отводить выхлопные газы. Чтобы устранить это, придется увеличить ход поршня, т. е. придется менять шатуны. Если хотите добиться большего эффекта, замените штатную прокладку головки блока цилиндров на более тонкую. Также можно подрезать саму ГБЦ, увеличив степень сжатия. Дополнение результативное, но трудоемкое, требует замены и регулировки некоторых узлов.

После окончания работ вы увеличите число лошадей в движке и добьетесь более высокого крутящего момента. Однако придется заливать бензин с более высоким октановым числом: если был 92-й заправляться нужно 95-м, а если был 95-й, то 98-мым. Увеличение объема двигателя может послужить хорошим началом для более глубоких преобразований.

расточка

Увеличение рабочего объёма двигателя

< Назад

Вперед >

Увеличение рабочего объема — наиболее радикальный способ увеличения мощностных показателей двигателя.

Рабочий объем определяется количеством цилиндров, их диаметром и величиной перемещения (ходом) поршня. Поскольку количество цилиндров — величина неизменная, варьировать можно только два последних параметра.

Диаметр цилиндра определяется конструкцией двигателя. Для его увеличения в двигателях с чугунными блоками цилиндров (F3R и ВАЗ) применяется расточка блока цилиндров для установки поршней большего диаметра с последующим хонингованием (нанесением микронеровностей) для задержки масляной пленки на рабочей поверхности стенки цилиндра. Наиболее просто изменение рабочего объема осуществляется в двигателях с алюминиевым блоком цилиндров и вставными мокрыми гильзами (двигатель УЗАМ). В этом случае для изменения диаметра цилиндра используют соответствующие новые гильзы, имеющиеся в ассортименте. Следует иметь в виду, что посадочный диаметр гильз для двигателя УЗАМ имеет различные типоразмеры — для двигателей УЗАМ-412 и УЗАМ-331.10 рабочим объемом 1.5 л применялись гильзы внутреннего диаметра 82 мм с посадочным диаметром 89 мм, а для двигателей УЗАМ большего рабочего объема — гильзы с посадочным диаметром 92 мм. Для установки гильз внутренним диаметром 85 мм в стандартный блок 1.5 л можно проточить наружный диаметр посадочной части гильзы до 89 мм; в продаже также встречаются уже проточенные гильзы внутренним диаметром 85 мм под блок цилиндров 1.5. Установить в такой блок без его доработки гильзы внутренним диаметром 88 мм невозможно, т.к. толщина стенки получается всего 0,5 мм. Однако можно расточить блок цилиндров 1.5 л под установку гильз с посадочным диаметром 92 мм, но это требует применения сложного специального оборудования. Блоки же цилиндров рабочим объемом более 1.5 л имеют посадочные места под гильзы диаметром 92 мм, поэтому в них можно установить гильзы как с внутренним диаметром 85 мм, так и с внутренним диаметром 88 мм.

Необходимо иметь в виду, что до 1992 г. блоки цилиндров УЗАМ для двигателей с рабочим объемом 1.5 л выпускались для установки гильз с посадочным диаметром 89 мм и уплотнительной медной прокладкой между гильзой и головкой блока цилиндров. Позже эти прокладки были исключены во избежание коррозии в этом месте вследствие образования гальванической пары на участке силумин-медь-чугун, а блок цилиндров стал выполняться с более высокой посадкой под гильзы на величину толщины этих прокладок. Поэтому при установке проточенных гильз в блоки цилиндров УЗАМ, выпущенных до 1992 г., необходимо также установить медные прокладки. В любом случае необходимо проконтролировать выступание гильз из блока на соответствие заданным параметерам.

Для увеличения хода поршня в цилиндре применяют измененный коленчатый вал с увеличенным радиусом кривошипа. Существует большой выбор коленчатых валов для двигателей ВАЗ и УЗАМ, как стандартных, так и изготавливаемых тюнинговыми фирмами. Для двигателей УЗАМ выпускаются стандартные стальные коленчатые валы с радиусами кривошипа 35, 37.5 и 40 мм, обеспечивающие ход поршня соответственно 70, 75 и 80 мм. изготавливает коленчатые валы из высокопрочного чугуна ВЧ-70 с радиусом кривошипа 42.5 мм для двигателей УЗАМ, обеспечивающий ход поршня 85 мм. Эта величина хода поршня для данного двигателя является предельной, т.к. при больших его значениях нагрузки при перекладке поршня превышают допустимые.

При значительном форсировании двигателей УЗАМ применяют гильзы и поршни от автомобилей ГАЗ-24 и ГАЗ-3110, предварительно расточив посадочное отверстие в блоке цилиндров под гильзу. При использовании гильз такого большого диаметра необходимо выполнить доработку ГБЦ, заключающуюся в упрочнении каналов в местах сопряжения гильзы с ГБЦ посредством их частичной заварки.

Ниже показаны примеры комбинаций диаметра цилиндра камеры сгорания и хода поршня для различных двигателей УЗАМ и их рабочий объем. В скобках показаны индексы названия двигателей, если двигатели в такой комбинации выпускались.

ВАРИАНТЫ КОМПОНОВКИ ДВИГАТЕЛЕЙ УЗАМ

Диаметр цилиндра, мм Ход поршня,мм
70 75 80 85
82 1479 (УЗАМ-412, 331.10) 1584 (УЗАМ-0102) 1649 1861
85 1589 1702 (УЗАМ-3317) 1816 (УЗАМ-3313,3318) 1929
88 1703 (УЗАМ-327) 1825 1946 (УЗАМ-248, 3320) 2068
92* 1861 1994 2127 2260

* применение поршней диаметром 92 мм требует серьезной доработки конструкции головки блока цилиндров

Двигатели ВАЗ выпускаются рабочим объемом 1.3, 1.5, 1.6, 1.7 и 1.8. Серийно на автомобилях «Москвич» применялись двигатели ВАЗ с рабочим объемом 1.6 (2106) и 1.8 (2130).

ВАРИАНТЫ КОМПОНОВКИ ДВИГАТЕЛЕЙ ВАЗ

Модель двигателя 2106 21213 2130 21203
рабочий объем 1568 1689 1774 1985
диаметр цилиндра 79 82 82 82
ход поршня 80 80 84 94

Увеличение рабочего объема двигателей ВАЗ за счет увеличения диаметра цилиндра трудно реализуемо в связи с близостью каналов системы охлаждения к стенкам чугунного блока цилиндров.

При выборе конфигрурации двигателя в процессе увеличения его рабочего объема выбирают между «длинноходным» и «короткоходным» вариантами, определяющими, какой из параметров — ход поршня ( «длинноходный» вариант) или диаметр цилиндра ( «короткоходный» вариант) преимущественно будет увеличиваться. При этом не следует забывать, что рабочий объем двигателя влияет не только на величину максимальной мощности, но и на то, при каких оборотах будут получены максимальные значения мощности и крутящего момента. В общем случае, при увеличении хода поршня максимальные значения мощности и крутящего момента достигаются при меньших значениях оборотов двигателя. К тому же, более «длинноходный» двигатель обеспечивает меньшее значение максимальной мощности, но большее значение крутящего момента по сравнению с «короткоходным». «Короткоходные» двигатели при этом достигают максимальной мощности при более высоких оборотах и при том же рабочем объеме развивают большую мощность, но почти всегда это сопровождается меньшими значениями крутящего момента на низких оборотах [19].

В разное время преобладали различные тенденции при увеличении рабочего объема двигателей. Так, в 70-х годах был разработан и прошел полный цикл испытаний «короткоходный» двигатель УЗАМ-327 рабочим объемом 1.7 л. По ряду причин этот двигатель не был запущен в производство, а позже появился более «длинноходный» вариант двигателя с рабочим объемом 1.7 с индексом 3317, выпускавшийся с двумя вариантами поршней — первоначально с поршнями, имеющими клиновидную поверхность без проточек и уникальной головкой блока цилиндров, а позже — с поршнями с поверхностью в форме усеченных конусов с проточками под клапана, рассчитанный на унифицированную головку блока цилиндров. Конструкция поршней в этих разновидностях двигателя невзаимозаменяема и поршни старой конструкции могут использоваться только с уникальной головкой блока цилиндров и не могут использоваться с унифицированной головкой.

Выбор поршней при форсировании двигателя

В случае увеличения рабочего объема двигателя с получением «стандартных» вариантов (например, при переходе на следующий уровень двигателей УЗАМ) есть возможность использования стандартных поршней. Разновес поршней в одном двигателе не должен превышать 3 г, стандартные поршни подразделяются на 4 весовых группы, номер которой выбит на днище поршня. Для поршней, поставляемых в з/ч, вместо номера группы указывается непосредственно масса поршня в граммах.

Однако для реализации нестандартных вариантов встает вопрос изготовления нестандартных поршней. Обычно такие поршни изготавливают специализированные фирмы (например, ) методом ковки или изотермической штамповки. При этом выбирают между стандартными (литыми) и штампованными поршнями. Бытует мнение о неоспоримых преимуществах кованых поршней, однако это не совсем так.

В стандартных и умеренно-форсированных двигателях литые поршни обеспечивают большую мощность, чем кованые [19]. Происходит это по следующим причинам:

— литые поршни имеют имеют меньший износ канавок для поршневых колец и очень малую теплопроводность, оставляя больше тепла в камере сгорания, что улучшает термический КПД двигателя;

— литые поршни обеспечивают меньший зазор в цилиндре и обеспечивают более стабильное положение поршневых колец;

— литые поршни в большинстве случаев легче кованых;

— литые поршни имеют существенно меньшую стоимость.

Для двигателей повседневного применения литые поршни более предпочтительны. Лишь при работе двигателя постоянно при высоких нагрузках и повышенной температуре предпочтительнее использование кованых поршней [19]. Если удельная мощность и другие особенности конструкции двигателя, например, уникальный размер, форма или положение относительно поршневого пальца, требуют применения кованого поршня, необходимо обеспечить требуемый рабочий зазор между поршнем и стенкой цилиндра, что для кованых поршней является технически непростой задачей в связи с тем, что зачастую кованые поршни изготавливаются из сплавов с высоким коэффициентом термического расширения. Такие поршни будут обладать стабильными характеристиками при высоких температурах и больших оборотах, но в обычном режиме движения их показатели невысоки — поршни, имеющие большие зазары между поршнем и стенками цилиндра в холодном двигателе, отрицательно влияют на топливную экономичность и увеличивают расход масла и токсичность выхлопных газов [19].

При выборе поршня необходимо обеспечить возможно меньший зазор у его юбки при всех, а не только «щадящих» условиях эксплуатации. Чем больше термическая стабильность сплава материала поршня, тем меньше поршень будет расширяться при нагревании и тем меньше будет минимально гарантированный зазор между поршнем и стенкой цилиндра.

Для продления срока службы поршней иногда применяют их покрытие специальными материалами — твердыми молекулярными покрытиями или керамикой. Получение твердого молекулярного покрытия подобно процессу металлизации. Такие покрытия имеют очень жесткую поверхность, которая хорошо отражает тепло. Керамика же поглощает тепло, но только в слоях, близких к поверхности. Эти слои в конечном счете действуют как очень эффективные изоляторы, удерживая тепло и предотвращая его проникновение в материал поршня. Нанесение керамического покрытия на верхнюю часть поршня предотвращает поглощение тепла головкой поршня. Непоглощенное тепло удерживается в камере сгорания и увеличивает давление газов, повышая термический КПД двигателя. Покрытие днища поршня способствует увеличению мощности двигателя на 4-8% [19]. Кроме того, головка поршня с покрытием намного меньше чуствительна к тепловыделению, вызванному детонацией.

Немаловажное значение имеет также форма поршня. Поршни с плоским днищем обеспечивают лучший фронт пламени в камере сгорания, чем поршни с выпуклым или вогнутым днищем.

Подбор поршневых колец

Особое внимание следует уделить подбору поршневых колец для форсируемого двигателя. Общим направлением в конструкциях высококачественных поршней является использование узких поршневых колец. Считается, что тонкое кольцо предотвращает вибрацию колец на высоких оборотах и уменьшает трение в цилиндре. Однако при этом тонкие кольца вследствие меньшей поверхности соприкосновения со стенкой цилиндра оказывают на стенки большее давление, такие кольца вызывают ускоренный износ цилиндров и самих колец. Поэтому если двигатель не используется преимущественно при оборотах более 6000 1/мин, предпочтительнее использовать широкие кольца. Практически улучшение характеристик двигателя при использовании тонких колец столь невелико, что может быть обнаружено только на испытательном стенде или при большом количестве испытательных заездов [19].

При изготовлении поршней важно также положение поршневых колец в поршне, особенно положение верхнего кольца. Если верхнее кольцо расположено высоко на поршне около его верхней части, характеристики двигателя будут лучшими вследствие того, что меньший объем недоступных газов будет захвачен в перемычке между кольцами. Однако если кольцо расположено слишком близко к верхней части поршня, то тонкая перемычка над канавкой кольца может перегреться и разрушиться, так как верхнее поршневое кольцо и перемычка над ним работают в очень жестких условиях. Верхнее кольцо не только должно обеспечивать качественное уплотнение у рабочих поверхностей при очень высоких температурах, но и работает в окружении высокотемпературных газов, сохраняя свою упругость и хорошее уплотнение, что определяет технологию производства и металлургические особенности колец [19].

Материал кольца должен иметь низкий коэффициент трения, хорошие характеристики против заедания и низкий коэффициент износа. Одним из первых эффективных материалов, используемых для поршневых колец, был ковкий чугун. Он хорошо сочетается с характеристиками чугуна, используемого в блоке цилиндров, а его пористая структура хорошо удерживает масло, уменьшая износ. Широко также применяется его разновидность — пластичный чугун, обладающий большинством качеств чугуна и кроме того может гнуться, что упрощает установку колец.

В форсированных двигателях применяются более сложные по конструкции кольца. Первоначально на чугунные кольца наносился слой хрома, помогающий противостоять истиранию и заеданию даже при очень высоких температурах и больших давлениях, к тому же обеспечивающий очень высокую износоустойчивость. Недостатком хромированных колец является их очень высокая твердость — необходимо очень точно выдержать размеры цилиндра для нормальной работы таких колец. Позже стали применять кольца из нержавеющей стали — в этот материал входит большое количество хрома, поэтому кольца из нержавеющей стали обладают большинством свойств хромированных чугунных колец [19]. Нержавеющая сталь противостоит высокой температуре лучше, чм хромированный чугун.

Для увеличения срока службы колец и обеспечения их быстрой приработки появились молибденовые кольца — кольцо с основой из чугуна с молибденовым покрытием. Молибден обладает противоизносными слоями хрома и зачастую превосходит их, эти кольца долговечнее, легко прирабатываются, более надежны. В настоящее время молибденовые кольца наиболее широко применяются в форсированных двигателях.

Существуют также керамические поршневые кольца из твердого и износостойкого неметаллического материала, однако их применение в двигателях пока сталкивается с трудностями сопряжения таких колец со стенками цилиндра, эта технология в настоящий момент находится в стадии развития.

Кроме материала поршневого кольца важное значение имеет его конструкция. Например, кольцо может иметь преднамеренное небольшое перекручивание, т.е. верхняя и нижняя поверхности кольца не лежат плоско в канавке, а слегка наклонены, и только верхний или нижний край рабочей поверхности кольца контактирует с отверстием цилиндра. Кольца сконструированы таким образом, чтобы ускорить приработку поверхностей поршневых колец и стенок цилиндров и помогать уплотнению кольца в верхней и нижней частях канавки. Величина перекручивания кольца очень незначительна и обычно получается путем стачивания фаски на внутреннем крае кольца. Фаска уменьшает небольшие напряжения вдоль внутреннего края и позволяет кольцу неравномерно ослабиться, приводя к его незначительной деформации, вызывающей требуемое перекручивание [19].

Для улучшения уплотнения цилиндров от повышенного давления газов также применяют сверление в верхней части поршня ряда очень мелких отверстий, доходящих до внутренней части канавки верхнего компрессионного кольца. Когда в цилиндре появляется давление, газы проходят через эти каналы и прижимают верхнее компрессионное кольцо к стенке цилиндра, обеспечивая очень хорошее уплотнение, но увеличивая износ цилиндра в его верхней части. Однако при этом весьма значительно увеличивается трение колец о стенки цилиндра, что приводит к дополнительным потерям.

Второе компрессионное кольцо обеспечивает дополнительное уплотнение для газов, прошедших через верхнее кольцо, поэтому их рабочие давление и температура существенно меньше, и, как следствие, требования к материалам их изготовления существенно ниже. Однако второе кольцо имеет важную дополнительную функцию — помогает маслосъемному кольцу, действуя как «скребок», предотвращая попадание масла в камеру сгорания и возникновение детонации. Иногда эти кольца спесиально делают скошенными, так, чтобы скос был меньше у верхнего края кольца, что помогает работе маслосъемного кольца — такое кольцо будет двигаться поверх масла при движении поршня вверх и будет удалять его при движении вниз.

Нередко применяют вторые компрессионные кольца без зазора, точнее — с очень маленьким зазором — при их использовании двигатель быстрее прирабатывается и выдает несколько большую мощность, так как предотвращает потери мощности за счет уменьшения прорыва картерных газов [19].

Важное значение также имеет конструкция маслосъемного кольца. Моторное масло, остающееся в камере сгорания, уменьшает октановое число топлива, что может приводить к детонации, а также приводит к образованию нагара в камере сгорания и на днище поршня, что вызывает снижение мощности двигателя. Хорошее маслосъемное кольцо поддерживает свои верхнюю и нижнюю кромки центральным разделителем. В дешевых кольцах используются волнообразные разделители верхней и нижней кромок, однако это не обеспечивает правильного положения кромок — при увеличении оборотов двигателя силы инерции стремятся распрямить волнообразный разделитель и кольцо вкручивается внутрь канавки, а масло проходит поверх кромок.

Подбор шатунов

Обычно при форсировании двигателя используют стандартные для данной модели двигателя шатуны. Однако необходимо оценить их состояние. Разновес шатунов в одном двигателе не должен превышать 4 г, излишки металла следует удалить. Для этого на шатуне имеются большие балансировочные подушки на обеих концах шатуна. Желательно добиться минимально возможной массы всех шатунов, удаляя металл с этих подушек и постоянно при этом производя его взвешивание.

Изогнутые и даже незначительно деформированные шатуны будут уменьшать мощность двигателя, т.к. они держат поршень под углом, увеличивая трение. Разумеется, обязательно должно быть проверено совмещение шатунов перед сборкой двигателя, а также размер большого отверстия шатуна — если шатун подвергался повышенным нагрузкам или детонации, отверстие в головке шатуна может быть деформировано или увеличено. Также следует проверить шатуны на наличие трещин.

Если двигатель предполагается эксплуатировать на высоких оборотах, то лучше подобрать шатуны с отверстием большого конца таким, чтобы оно укладывалось в нижний предел допуска, что увеличивает сжатие шатунного подшипника.

Необходимо также обратить внимание на болты шатунов — если эти болты растянулись под нагрузкой, то это ослабит зажим и может привести к проворачиванию вкладышей. Если при разборке двигателя обнаружено, что вкладыши проворачивались, не следует повторно использовать этот шатун.

Дата публикации: 2007-10-17

< Назад

Вперед >

Установка облегченных поршней либо колец

Имеются в виду кованые элементы. Они очень прочные и легкие. Однако такое увеличение мощность двигателя может вызвать ряд проблем:

  • разборку силового агрегата и установку в него новых деталей нужно делать на высоком профессиональном уровне;
  • обращение к специалистам вынудит вас выложить приличную сумму;
  • в ходе переделки придется дорабатывать тормозную, выхлопную, впускную системы, а также коробку передач.

Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания

Основные действия при выполнении доводки:

  1. Снижение весовых характеристик коленвала и шатунно-поршневой группы.
  2. Шлифовальные работы и притирка сопряженных поверхностей коллекторов.
  3. Калибровка и регулировка электронных комплексов, отвечающих за работу моторного агрегата.
  4. Увеличение или уменьшение передаточных чисел шестерен.

Углубленный тюнинг двигателя ВАЗ 2106, прежде всего, связан с подбором и установкой коленвала специального типа взамен штатной детали. Такая деталь монтируется с кривошипом большего размера. Под блок, расточенный под поршневую группу увеличенного диаметра, подбираются цилиндры, укомплектованные кольцами Т-образной конфигурации компрессионного типа.

Далее проводится технологическая корректировка настройки всех составляющих элементов двигателя с основной задачей по повышению коэффициента сжатия в цилиндре мотора. Этот показатель напрямую связан с угловым значением газораспределительных фаз и позиции дроссельной заслонки.

Позиционное изменение газораспределительного вала проводится приводной шестеренкой регулируемого типа, что дает возможность наполнять топливом с повышенной концентрацией воздуха камеру сгорания. Наиболее эффективным вариантом тюнинга двигателя считается монтаж турбины на силовую установку и оборудование транспортного средства т.н. «прямотоком», т.е. выводной системой прямоточного выхода газов. Выбор такого вспомогательного оснащения целесообразно проводить со специалистом по двигателям. Если автомобиль будет усовершенствован турбиной, то это намного увеличит динамические параметры двигателя.

Такой вид модернизации, как чип-тюнинг двигателя дает возможность оптимизации функционала транспортного средства. Изменение динамических параметров происходит без применения механических доводок. Такой сервис проводится исключительно в авто, где имеется система ЭБУ. Наличие в ЭБУ соответствующего программного обеспечения позволяет контролировать и изменять параметры настроек зажигания, топливной подачи, расходомера и т.д.

Одним из прогрессивных путей тюнинга двигателя считается корректировка системы зажигания транспортного средства. Для этих целей практикуется установка электронно-коммутационного зажигания, которое в среде автомобилистов называют бесконтактным, т.е. без участия компонентов механической коммутации (контактов прерывателя). Дополнительно к этому необходимо поменять свечные элементы системы на более высококачественные изделия.

Статьи по теме:

  • ПОЛНОПРИВОДНЫЙ ФОРД ТРАНЗИТ Страница 1 из 5 Годы кропотливой и упорной работы принесли свои результаты. Ford Transit таким,…
  • БМВ 7 Е38 BMW 7-Series e38 (1998-2001) – третье поколениеТак как второе поколение было снято с производства, было…
  • ЗИС 5 АВТОМОБИЛЬ Автомобиль ЗИС-5 (1933-1941 г.г.), ЗИС-5В (1941-1947 г.г.), ЗИС-50 (1948), УралЗИС-5 (1947-1955г.г.), УралЗИС-355 (1956-1957г.г.), УралЗИС-355В (1957-1958г.г.).…
  • МЕРСЕДЕС С МИГАЛКОЙ Автокатастрофа Ольги АлександринойГоликов Альберт Александрович Статьи | Общество Версия для печати «ДТП…

Установка нулевого воздушного фильтра

Суть доработки – уменьшение сопротивления воздушному потоку, поступающему в цилиндры. Дело в том, что стандартная деталь сделана из прочного материала, который не дает проходить большому объему воздуха. Но устанавливать фильтр нулевого сопротивления лучше всего в « комплекте» с другими модернизациями, иначе это даст минимальный эффект. Не стоит забывать и о том, что фильтрующие способности у такой детали хуже, чем у штатной запчасти.

Отношение хода поршня к диаметру цилиндра

Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D. Точка зрения на величину хода поршня в течение развития двигателестроения менялась.

На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.

Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D, достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин-1 и более, вследствие чего удельная мощность быстро возросла.

В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.

Рис. 1
Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей

Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D, приведена на рис. 1. В настоящее время более выгодным считается отношение S/D, равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.

Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.

Последнее обновление 02.03.2012 Опубликовано 27.09.2011

Наверх

Чип тюнинг (перепрограммирование)

Способ простой: мотор вскрывать не надо и что-то покупать тоже не требуется. Если это дело доверить специалисту, силовая установка полностью раскроет все свои возможности, которые скрывает автопроизводитель, чтобы увеличить срок эксплуатации автомобиля. Увеличение мощности двигателя составит 10-15%. Чаще всего тюнингисты повышают объем подаваемого топлива.

Мотор станет сильнее, а выбросы в атмосферу – вреднее. Еще можно разблокировать ограничитель частоты вращения коленвала. К примеру, когда-то Honda без турбонаддува развивала мощность в 160 л. с. при объеме цилиндров всего 1,6 литра. Достигалось это раскруткой двигателя до 8 тыс. об/мин.

Мощность двигателя на Ваз 2109 и ее увеличение своими силами

Двигатель Ваз 2109

Большинство «девяток» на которых сегодня ездит определенная часть автомобилистов, наделена карбюраторным двигателем. Мощность двигателя на Ваз 2109 многих в этом случае не устраивает и некоторые пытаются ее увеличить. Автомобиль везут в СТО, где проводятся различные методы увеличения мощности. В данной статье мы узнаем, что можно сделать своими руками, если на Ваз 2109 двигатель не развивает полной мощности.

Установка баллона с закисью азота

Данный способ позволяет получить резкое ускорение, но только на короткий промежуток времени. Баллон подсоединяется к топливной системе: закись азота способствует образованию большего количества кислорода, что «вынуждает» топливо сгорать лучше и быстрее. Способ особенно хорош для спортивных автомобилей, для которых зачастую все решает кратковременный рывок. Отрицательные стороны метода:

  • высокая стоимость комплектующих;
  • приличная стоимость работ;
  • уменьшение ресурса мотора.

Использование турбонаддува

Считается одним из лучших методов, позволяющих увеличить количество лошадиных сил в моторе. Многие автопроизводители уже на заводе оснащают свои авто турбинами. Если у вас именно такая машина, то для повышения мощности достаточно установить более сильный узел: операция не очень сложная, требует минимум доработок. Сложнее обстоит дело с атмосферными авто. Имеется в виду не только сам монтаж, но и эксплуатация:

  • воздушные и масляные фильтры потребуют более частой замены;
  • двигатель придется прогревать и в теплую погоду.

Что касается установки на «атмосферники» описываемого узла, не стоит забывать о дополнительном охлаждении турбины: обычно используют интеркулер, увеличивают объем охлаждающей жидкости, повышают производительность вентилятора. Плюс к этому, придется поставить более производительные форсунки.

Альтернативные способы

Более простой метод — замена воздушного фильтра. Расход топлива тут не увеличивается, а мощность возрастает на 10%. Вместе с этой процедурой можно убрать шероховатости на цилиндрах, провести шлифовку впускных каналов. Другими словами, провести «генеральную уборку» в двигателе ВАЗ 2114. А вот с установкой турбонагнетателя нужно быть осторожней. Несмотря на видимую простоту монтажа и стандартное оборудование (такую деталь можно купить на любом авторынке, просто зная модель своей машины), эта система даст очень большую нагрузку на трансмиссию.

Самый простой по действиям вариант – чип-тюнинг. Речь идет о перепрограммировании компьютерной системы двигателя. Сегодня существует очень много средств, каждое из которых меняет определенную сторону работу. Например, можно уменьшить расход топлива, увеличить мощность разгона и так далее. Но тут не обойтись без специального оборудования – программинатора. Зато после монтажа электронной платы на двигатель можно будет самостоятельно и неоднократно менять параметры.

Замена выхлопной трубы

Имеется в виду установка прямоточной детали, не имеющей резонатора. Это снижает сопротивляемость глушителя выхлопным газам, которые начинают перемещаться гораздо быстрее. В результате силовая установка меньше тратит «сил» на удаление из выхлопной системы отработанных газов и больше энергии на раскрутку коленвала. Прибавка к мощности – до 15%. Совсем неплохо, но:

  • работа двигателя будет сопровождаться неприятным громким звуком;
  • повышенное содержание вредных веществ в выхлопе ухудшает экологическую обстановку.

Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания

Автор: Юлиюс Мацкерле (Julius Mackerle)
32634 2

Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна .

Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R3, а её поверхность — 4∙π∙R2, и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α, то большая сфера будет охлаждаться медленнее.

Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.

Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.

При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.

Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.

Замена штатных деталей двигателя на спортивные

Идея состоит в том, чтобы заменить заводские детали на аналоги, устанавливаемые на спортивные машины. Подобная операция позволит поднять на максимальную высоту технические параметры силового агрегата. Однако стоит помнить: автомобиль необходимо адаптировать под иные нагрузки. Придется менять КПП, переделывать тормозную систему. К достоинствам данного метода можно отнести сохранение заводского ресурса двигателя и прежнего расхода горючего.

Увеличение мощности дизельного агрегата

Дизель, если сравнивать его с бензиновым двигателем имеет ряд преимуществ: экономичность и относительная «терпимость» к качеству топлива. Мотор, работающий на солярке, лучше тянет на «низах». Что касается увеличения мощности, то к дизелю применимы большинство методов, перечисленных выше: расточка цилиндров, установка турбонаддува, чип-тюнинг и т. д. Но есть и особенности совершенствования.

Модули увеличения мощностных характеристик

Речь идет о специально разработанных блоках, взаимодействующих с топливной системой автомобиля. Они никак не влияют на работу электронного блока управления, просто осуществляют дополнительный контроль над работой электронных датчиков. Существует четыре типа модулей:

  1. Блок, изменяющий импульсы, управляющие работой форсунок. Здесь задача модуля – замедление или ускорение поднятия иглы. Это понижает расход солярки, улучшает ее сгорание. Происходит это благодаря изменению угла опережения зажигания. Модуль несложен в установке и может работать с любыми современными дизельными агрегатами.
  2. Блок, влияющий на работу топливного насоса высокого давления. Модуль функционирует совместно с датчиком, выдающим информацию о давлении топлива. При этом данные занижаются. Это приводит к повышению давления в ТНВД. В итоге – сохранение эксплуатационного ресурса силового агрегата при улучшении динамики. Блок работает только с дизелями, использующими механический способ подачи солярки и выпущенными до 2008 года.
  3. Блок, работающий с датчиком топливной рампы. Этот модуль тоже занимается «обманом», поставляя в ЭБУ данные о снижении давления в рампе. Он начинает «думать», что динамические характеристики мотора недостаточны и меняет интенсивность функционирования форсунок. Мощность увеличивается, а расход топлива падает.
  4. Модуль, оптимизирующий работу ЭБУ (точнее, его процессора). Цель блока – определение давления в топливной системе. При большом его значении посылается сигнал, «приказывающий» увеличить тайминг форсунок. Т. е. модуль способен изменять режим работы двигателя без участия электронного блока управления. Блок не «занимается» поставкой ложной информации и устанавливается в систему высокого давления. Хорошо взаимодействует с любой современной дизельной установкой.

К плюсам вышеперечисленных блоков можно отнести простоту установки, экономию расхода солярки и увеличение мощности. Однако при этом уменьшается срок службы блока цилиндров, форсунок, топливного насоса. При этом выброс в атмосферу вредных веществ повышается.

Увеличение мощности и объема двигателя ВАЗ 2114

Объем двигателя ВАЗ 2114 и его характеристики менялись и улучшались на протяжении всего периода выпуска, с 2001 по декабрь 2013 года. На первую партию машин ВАЗ 2114 устанавливались инжекторные 8-клапанные агрегаты объемом 1.5 л. После модернизации 2007 года на «четырнадцатые» ставились новые двигатели, объемом 1.6 л. Новые серийные двигатели ВАЗ-11183-1000260 получили 3 класс экологичности, Euro-3. Наиболее мощный из всех агрегатов ВАЗ был собран и установлен на Ладу Приору в 2010 году. Мощность этой силовой установки составила 98 лошадиных сил. Общей чертой всех двигателей модели ВАЗ 2114 является то, что они 4-тактные, имеют одинаковую систему распределенного впрыска топлива. В цилиндры мотора топливо подается благодаря установленным форсункам.
Сегодня этот метод питания движков является наиболее эффективным из всех схем подачи топлива. Моторы имеют стандартный, порядный вид, а их распредвал находится сверху. Для охлаждения агрегатов используется жидкостная система закрытого типа. Часть механизмов смазываются маслом под давлением, часть — путем разбрызгивания масла.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]