Как работает двигатель с изменяемой степенью сжатия
Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова. Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, — это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках.
При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего — в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна.
Японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.
Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой — в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода. B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего. D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.
Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку — ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах. Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел. Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно.
Мотор Infiniti VC-Turbo.
В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см3. «Турбочетверка» развивает мощность 268 л. с. и крутящий момент в 380 Нм — ощутимо больше, чем 2,5‑литровый V6 предшественника (его показатели — 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина. Кроме того, VC-Turbo на 18 кг легче а, занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.
Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций. Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название). В результате даже без уравновешивающих валов этот 4‑цилиндровый агрегат работает так же тихо и плавно, как V6.Но изменяемое положение ВМТ при помощи сложной системы рычагов — не единственная особенность нового мотора. Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов. В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.
Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия. Обе системы работают попеременно, а при высоких нагрузках — одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется. В результате получается ультрагладкая «зеркальная» поверхность, на 44 % уменьшающая трение поршневых колец.
Еще одна уникальная особенность мотора VC-Turbo — это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор. Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе. Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование. На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4‑цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!
Источник
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Теги: Технологии Infiniti Nissan VC-Turbo верхняя мертвая точка ВМТ двигатель КПД поршень степень сжатия топливная смесь цикл Аткинсона цилиндры
Предыдущая статья Крылатые ракеты Tomahawk. Про топливо из кукурузы и экологическую чистоту
Следующая статья «Российский» перовскит. Искусственное освещение и рекордный КПД
Предоставлено SendPulse
Нравится 0
- 0
- 0
- 0
- 0
Преждевременное воспламенение и детонация
Смесь, поступающая в камеру сгорания, должна не взрываться, а гореть, причем, равномерно, и на протяжении всего отрезка времени, пока поршень движется вниз.
При этом условии энергия расходуется максимально эффективно, а детали поршневой группы изнашиваются равномерно и не перегреваются. Сложность заключается в том, что скорость горения смеси обычно гораздо быстрее скорости движения поршня.
В связи с этим и возникает основная проблема, встающая на пути тех, кто задался целью увеличить степень сжатия. При увеличении давления смесь самопроизвольно возгорается.
Это явление называется преждевременным воспламенением. Более того, возгорание смеси происходит, когда поршень еще только завершает фазу сжатия. В этом случае энергия сгорающего топлива создает дополнительное сопротивление и растрачивается на выполнение бесполезного действия.
Вторая проблема: выделение чрезмерного количества энергии. Проще говоря – взрыв. Явление это в теории двигателестроения называется детонацей и имеет крайне негативные последствия.
Таким образом, увеличение степени сжатия может сыграть с владельцем двигателя злую шутку. Чтобы избежать неприятных последствий, стоит ознакомиться с таким понятием, как октановое число.
Определение компрессии
Для полного понимания значения этого термина отбросьте в сторону автомобильные справочники. Запомните одно: компрессия — наибольшее давление внутри цилиндра, которое возникает лишь под конец сжатия. Её измеряют в различных мерах измерения, но чаще всего она определяется именно в атмосферах. Отметим, что такой процесс постоянно изменяется из-за степени износа двигателя.
Необходимое давление в цилиндре индивидуально для каждой ёмкости и зависит от её объема. Для полного понимания разницы двух указанных выше понятий, вам стоит всего лишь посмотреть на следующую таблицу:
Модель мотора | Объем (литры) | Давление (атмосферы) |
ЯМЗ 236 | 11,15 | 24 — 37 |
ЕВРО-4 | 11,76 | 33 — 39 |
Lexus ES 300 (б/у) | 3 | 15 — 16 |
ВАЗ 2101 | 1,6 | 10 — 13 |
Д240 | 4, 75 | 25 — 29 |
Характер теплообмена при сжатии
Сжатие свежего заряда в цилиндре дизеля — сложный политропный процесс, зависящий от многих факторов: параметров начального состояния заряда, температурного уровня цилиндра, конструкции двигателя, плотности поршневых колец и т. д. В начальный период сжатия, как правило, температура заряда более низкая, чем температура стенок рабочего цилиндра. Поэтому сжатие протекает с подводом тепла от стенок цилиндра к заряду. Этот участок линии сжатия на диаграмме P-V (см. рис. ниже) идет круче адиабаты, показатель политропы сжатия n больше показателя адиабаты: n1 > k.
Рис. 1 Схема процесса сжатия на диаграммах: a) P-V и б) T-S
По мере сжатия заряда его температура повышается, передача тепла от стенок уменьшается. Когда температура заряда станет равной температуре стенок (точка m на рис.), то теплообмен прекращается; в этот момент показатель политропы сжатия становится мгновенно равным показателю адиабаты: n1 = k.
При дальнейшем сжатии температура заряда будет больше температуры стенок цилиндра, вследствие чего наблюдается отвод тепла от заряда к стенкам. На этом участке линия сжатия идет положе адиабаты, а показатель политропы сжатия меньше показателя адиабаты: n1 < k.
По экспериментальным данным, у судовых дизелей показатель n1 меняется от 1,5 — у нижней мертвой точки до 1,1 — у верхней мертвой точки. Однако при расчетах рабочих процессов по методу Гриневецкого-Мазинга полагают, что процесс сжатия осуществляется на всем ходе поршня при постоянном показателе политропы сжатия: n1 = const. При этом обеспечивается та же работа на сжатие, что и при переменном значении показателя n1 в реальном цикле.
Способы изменения степени сжатия
У современных силовых агрегатов можно откорректировать эту характеристику как в большую, так и в меньшую сторону. Если нужно повысить параметр, то для этого растачиваются цилиндры и ставятся поршни с большим диаметром. Любому, кому интересно понимать разницу в компрессии и степени сжатия двигателя сгорания, будут полезны эти сведения. Ведь среди автолюбителей есть сторонники разного рода тюнинга.
Другой, не менее эффективный способ изменения степени сжатия, заключается в уменьшении камеры сгорания. В этом случае с места сопряжения ГБЦ с блоком двигателя удаляется слой металла. Такая операция проводится с использованием строгального или фрезерного станка.
Если же по каким-либо причинам возникает необходимость в понижении степени сжатия, то, наоборот, стоит поместить дюралевую прокладку между блоком цилиндров и ГБЦ. Другой способ – это удаление слоя металла с днища поршня. Однако он более сложен в реализации, поскольку это потребует определенных усилий, навыков и умений. К тому же для этой процедуры нужен токарный станок.
Расчет степени сжатия
Для любого двигателя внутреннего сгорания важно, чтобы данный параметр обладал максимально возможной величиной. Однако при необходимости форсировать мотор следует знать, как эту характеристику можно вычислить. Это нужно для того, чтобы избежать детонации, из-за чего мотор может просто выйти из строя.
Формула, с помощью которой проводится вычисление, выглядит следующим образом:
где CR- степень сжатия, V – рабочий объем цилиндра, C – объем камеры сгорания.
Тому автолюбителю, который желает знать, какая между компрессией и степенью сжатия разница, будут интересны подобные вычисления. Возможно, это пригодится ему на практике.
Для определения этого параметра в отношении лишь одного цилиндра, следует общий рабочий объем двигателя разделить на количество «стаканов». В результате получаем значение V из формулы выше.
А вот определить показатель C заметно труднее, но тоже возможно. Для этого на примете у опытных автомобилистов и механиков, занимающихся ремонтом двигателей, имеется верное средство – бюретка. Она проградуирована в кубических сантиметрах. Самый простой способ – это залить в камеру сгорания бензин, после чего бюреткой измерить ее объем. Остается полученные данные занести в формулу.
Как происходит воздействие?
Так на что же оказывает влияние степень сжатия? Здесь стоит учитывать то количество работы, которое производит силовой агрегат. И чем выше этот параметр, тем больше энергии будет выделяться в ходе сгорания топливовоздушной смеси. Соответственно, повышается и мощность двигателя.
По этой причине большинство производителей старается увеличить силовые показатели мотора за счет одной эффективной методики. К ней стали прибегать еще с конца прошлого столетия. Вместо того чтобы двигаться в направлении увеличения объема цилиндров и камеры сгорания, специалисты, а они уж точно знают, какая разница между компрессией и степенью сжатия, стремятся повысить именно последний показатель.
Однако здесь имеются ограничения. Рабочую смесь нельзя сжимать бесконечно долго — по достижении определенной величины она детонирует, то есть взрывается. В то же время это касается только двигателей, работающих на бензине. Дизельные силовые агрегаты лишены риска детонации. Собственно, этим и объясняется их более высокая степень сжатия.
И, чтобы избежать столь разрушительного воздействия, ведь детонация для двигателя губительна, повышается октановое число бензина. А это, в свою очередь, увеличивает стоимость топлива. Ко всему прочему те добавки, которые служат этой цели, приводят к ухудшению экологических параметров мотора.