Задачи на КПД теплового двигателя: примеры решений


Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением . Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Коэффициент полезного действия тепловых двигателей

На прошлом уроке мы с вами начали знакомство с тепловыми двигателями. Давайте вспомним, что так называется устройство, которое совершает механическую работу за счёт внутренней энергии топлива.

Простейший тепловой двигатель представляет собой цилиндрический сосуд, в котором находится газ под поршнем. При нагревании газа, его давление и объём увеличиваются, и поршень приходит в движение, поднимая груз на некоторую высоту.

Любой тепловой двигатель состоит из трёх основных элементов: нагревателя, рабочего тела (как правило, газ) и холодильника (чаще всего атмосфера или вода при температуре окружающей среды).

Энергия, выделяемая при сгорании топлива в нагревателе, передаётся рабочему телу путём теплопередачи. При расширении газа часть его внутренней энергии идёт на совершение работы. А некоторое количество теплоты неизбежно передаётся холодильнику. Таким образом, получается, что полное превращение внутренней энергии газа в работу невозможно. Это обусловлено необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Но второй закон термодинамики запрещает это: ведь невозможно создать вечный двигатель второго рода, то есть двигатель, который полностью превращал бы теплоту в механическую работу.

Баланс энергии за цикл можно получить на основе первого закона термодинамики.

Для идеального теплового двигателя изменение внутренней энергии равно нулю, так как рабочее тело вернулось в исходное состояние. Отсюда находим, что полезная работа, совершаемая тепловым двигателем, равна разности между количеством теплоты, полученной от нагревателя, и количеством теплоты, отданной холодильнику:

Отношение полезной работы к количеству теплоты, которое рабочее тело получило от нагревателя, называется коэффициентом полезного действия теплового двигателя (сокращённо, КПД):

Так как часть теплоты, полученной от нагревателя, передаётся холодильнику, то коэффициент полезного действия любого теплового двигателя всегда меньше единицы:

Для получения максимально возможного коэффициента полезного действия необходимо охладить рабочее тело перед сжатием.

Это можно сделать путём адиабатного расширения газа, при котором его температура понизится до температуры холодильника. Далее при изотермическом сжатии рабочее тело передаст холодильнику некоторое количество теплоты. А завершить цикл теплового двигателя эффективнее всего адиабатным сжатием газа до первоначальной температуры. Впервые этот цикл был предложен французским инженером Сади Карно, поэтому его ещё называют циклом Карно.

Формулу для определения коэффициента полезного действия цикла Карно вы сейчас видите на экране:

КПД любого реального теплового двигателя не может превышать КПД идеального цикла Карно. Формула Карно даёт теоретический предел для максимального значения коэффициента полезного действия тепловых двигателей. Она показывает, что двигатель тем эффективней, чем больше разность температур нагревателя и холодильника.

А КПД идеального теплового двигателя мог бы быть равен единице только в том случае, если бы было возможно использовать холодильник с температурой, равной абсолютному нулю. Но, как известно, это невозможно даже теоретически, потому что абсолютного нуля температуры достичь нельзя.

Для закрепления нового материала, решим с вами задачу. Задача 1.

Каждый из четырёх двигателей реактивного самолёта на 5000 км пути развивает среднюю силу тяги 0,11 МН. Определите объём керосина, израсходованного на этом пути, если коэффициент полезного действия двигателя равен 24 %. Плотность и удельная теплота сгорания керосина соответственно равны 800 кг/м3 и 43 МДж/кг.

В заключение урока отметим, что изобретение паровой машины, а впоследствии и двигателя внутреннего сгорания французским инженером Этьеном Ленуаром в 1860 г. имело исключительно важное значение.

Сейчас трудно представить нашу жизнь без автомобилей, самолётов, кораблей и других устройств, в которых внутренняя энергия сжигаемого топлива частично преобразуется в механическую работу.

Наибольшее значение имеет использование тепловых двигателей в энергетике и на транспорте. Тепловые двигатели — паровые турбины — устанавливают на тепловых и атомных электростанциях, где энергия пара превращается в механическую энергию роторов генераторов электрического тока.

Двигатели внутреннего сгорания устанавливают на автомобилях, мотоциклах, вертолётах и самолётах, тракторах и тяжёлых автомобилях. Создание реактивного двигателя позволило поднять самолёты на большую высоту, увеличить скорость и дальность их полётов.

Однако интенсивное использование тепловых двигателей в энергетике и на транспорте отрицательно влияет на окружающую среду. При работе тепловые двигатели выбрасывают в атмосферу огромное количество горячего пара или газа, что приводит к тепловому загрязнению атмосферы.

Широкое использование различных видов топлива влечёт за собой увеличение в атмосфере углекислого газа, который, соединяясь в атмосфере с водяными парами, образует угольную кислоту и выпадает в виде кислотных дождей.

Сжигание топлива на тепловых электростанциях ведёт к накоплению в атмосфере угарного газа, являющегося ядом для живых организмов. Например, при сгорании тонны бензина образуется около 60 кг оксида углерода.

Решение проблем, возникающих при сжигании топлива учёные и конструкторы видят:

· в очистке газовых выбросов в атмосферу;

· увеличении коэффициента полезного действия тепловых двигателей, в частности, путём создания условий для наиболее полного сгорания топлива;

· замене тепловых двигателей на более экологически чистые двигатели, например, электрические;

· использование альтернативных источников энергии.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

Также читайте: Назначение изолирующих штанг

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

(3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P2=U2*J2*cosφ2, (4)

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

(5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

В свою очередь:

(7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

β=J2/J2н, (8)

где J2н — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

J2=β*J2н(9)

Если подставить данное равенство в формулу (5), то получится следующее выражение:

(10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

\[F_1s_1\approx F_2s_2\left(4\right).\]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Для чего нужен расчет КПД

Как рассчитать потребление электрической энергии

Наглядный пример недостаточно эффективного устройства – классическая лампа накаливания. Пропускание тока через вольфрамовую спираль повышает температуру проводника. В рабочем режиме значительное количество потребляемой мощности расходуется на генерацию излучения. Однако к видимой части диапазона относится только небольшая часть спектра. Так как вырабатываемая теплота не выполняет полезного действия, соответствующие энергетические затраты следует узнавать по излишним.

Если выразить КПД через мощность в этом случае, следует одновременно учесть долговечность. Эта методика повышает точность оценки, так как подразумевает необходимость периодической замены испорченного излучателя.

В типовом рабочем режиме лампа накаливания нагревает нить до 2600-2800К. При таком значении срок службы составляет 900-1200 часов, КПД – от 5 до 7%. Увеличить эффективность в 2-5 раз можно повышением температуры до 3400-3600К. Однако в этом варианте долговечность уменьшается до 5-6 часов. Подобные практические характеристики нельзя признать удовлетворительными.

Сравнение эффективности и других параметров разных типов ламп

Эта таблица демонстрирует превосходство экономичных источников света. Срок службы современных светодиодов измеряется десятками тысяч часов. Даже на завершающих этапах рабочих циклов обеспечиваются высокая яркость и качественное распределение спектральных составляющих.

Нахождение тока в полной цепи

Как рассчитать амперы

Для изучения эффективности потребления энергии в электротехнике можно использовать базовые формулы. В полной цепи по базовому определению рассматривают источник тока (I) с внутренним сопротивлением (r). Подключенная нагрузка потребляет определенную мощность. Она характеризуется электрическим сопротивлением R.

Прохождение тока по такой цепи обеспечивает энергия источника, которая определена значением электродвижущей силы (ЭДС – E). Ее можно выразить как отношение выполненной сторонними силами работы (A) по передвижению заряда (q) с положительным знаком по соответствующему контуру. С учетом известной формулы I= q/t несложно определить зависимость между рассматриваемыми величинами:

А = E * I * t,

где t – контрольный временной интервал.

Отдельно можно рассмотреть участки с внутренним и внешним сопротивлением. Каждый из них выделяет определенное законом Джоуля-Ленца количество теплоты Q = I2 * R * t. Так как энергия не пропадает бесследно, можно сделать правильный вывод о равенстве Q = A. Подставив значения в исходное выражение, получают:

E = I*R + I*r.

ЭДС полной цепи вычисляется сложением двух падений напряжений на внутреннем и внешнем участке. Элементарное преобразование позволяет узнать силу тока в соответствующем проводнике:

I = E/ (R+r).

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]